Advanced search options
You searched for subject:(Automorphic Forms Representation Theory)
.
Showing records 1 – 30 of
75099 total matches.
◁ [1] [2] [3] [4] [5] … [2504] ▶
Search Limiters
Dates
Universities
Department
Degrees
Levels
Languages
Country
▼ Search Limiters
University of Oklahoma
1.
Wagh, Siddhesh.
MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.
Degree: PhD, 2019, University of Oklahoma
URL: http://hdl.handle.net/11244/321131
Subjects/Keywords: Number Theory; Automorphic forms; Representation Theory; Maass forms
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Wagh, S. (2019). MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/321131
Chicago Manual of Style (16th Edition):
Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed March 07, 2021. http://hdl.handle.net/11244/321131.
MLA Handbook (7th Edition):
Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Web. 07 Mar 2021.
Vancouver:
Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11244/321131.
Council of Science Editors:
Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/321131
Harvard University
2. Raskin, Samuel David. Chiral Principal Series Categories.
Degree: PhD, Mathematics, 2014, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305
Subjects/Keywords: Mathematics; Algebra; Algebraic geometry; Automorphic forms; Geometric Langlands; Representation theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Raskin, S. D. (2014). Chiral Principal Series Categories. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305
Chicago Manual of Style (16th Edition):
Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Doctoral Dissertation, Harvard University. Accessed March 07, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.
MLA Handbook (7th Edition):
Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Web. 07 Mar 2021.
Vancouver:
Raskin SD. Chiral Principal Series Categories. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Mar 07]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.
Council of Science Editors:
Raskin SD. Chiral Principal Series Categories. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305
3. File, Daniel Whitman. On the degree 5 L-function for GSp(4).
Degree: PhD, Mathematics, 2010, The Ohio State University
URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891
Subjects/Keywords: Mathematics; automorphic forms; representation theory; number theory
…proposed several conjectures relating automorphic representation theory to number theory [25… …determine whether it is the L-function of an automorphic representation. Such a result is known as… …representation π = ⊗v πv of an adelic algebraic group G(A) is automorphic. The converse… …Dirichlet series that are twisted by GL2 automorphic forms. Suppose that f is a cuspidal elliptic… …space of automorphic forms. 1.3 The Degree Five L-function In [1] Andrianov and…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
File, D. W. (2010). On the degree 5 L-function for GSp(4). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891
Chicago Manual of Style (16th Edition):
File, Daniel Whitman. “On the degree 5 L-function for GSp(4).” 2010. Doctoral Dissertation, The Ohio State University. Accessed March 07, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891.
MLA Handbook (7th Edition):
File, Daniel Whitman. “On the degree 5 L-function for GSp(4).” 2010. Web. 07 Mar 2021.
Vancouver:
File DW. On the degree 5 L-function for GSp(4). [Internet] [Doctoral dissertation]. The Ohio State University; 2010. [cited 2021 Mar 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891.
Council of Science Editors:
File DW. On the degree 5 L-function for GSp(4). [Doctoral Dissertation]. The Ohio State University; 2010. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891
Temple University
4. Daughton, Austin James Chinault. Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods.
Degree: PhD, 2012, Temple University
URL: http://digital.library.temple.edu/u?/p245801coll10,162078
Subjects/Keywords: Mathematics; automorphic forms; automorphic integrals; hecke correspondence; number theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Daughton, A. J. C. (2012). Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods. (Doctoral Dissertation). Temple University. Retrieved from http://digital.library.temple.edu/u?/p245801coll10,162078
Chicago Manual of Style (16th Edition):
Daughton, Austin James Chinault. “Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods.” 2012. Doctoral Dissertation, Temple University. Accessed March 07, 2021. http://digital.library.temple.edu/u?/p245801coll10,162078.
MLA Handbook (7th Edition):
Daughton, Austin James Chinault. “Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods.” 2012. Web. 07 Mar 2021.
Vancouver:
Daughton AJC. Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods. [Internet] [Doctoral dissertation]. Temple University; 2012. [cited 2021 Mar 07]. Available from: http://digital.library.temple.edu/u?/p245801coll10,162078.
Council of Science Editors:
Daughton AJC. Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods. [Doctoral Dissertation]. Temple University; 2012. Available from: http://digital.library.temple.edu/u?/p245801coll10,162078
University of Minnesota
5. Zhang, Lei. Automorphic forms on certain affine symmetric spaces.
Degree: PhD, Mathematics, 2011, University of Minnesota
URL: http://purl.umn.edu/109867
Subjects/Keywords: Automorphic forms; Distinguished tame supercuspidal representation; Gelfand pairs; Number theory; special value of L-function; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Zhang, L. (2011). Automorphic forms on certain affine symmetric spaces. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/109867
Chicago Manual of Style (16th Edition):
Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Doctoral Dissertation, University of Minnesota. Accessed March 07, 2021. http://purl.umn.edu/109867.
MLA Handbook (7th Edition):
Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Web. 07 Mar 2021.
Vancouver:
Zhang L. Automorphic forms on certain affine symmetric spaces. [Internet] [Doctoral dissertation]. University of Minnesota; 2011. [cited 2021 Mar 07]. Available from: http://purl.umn.edu/109867.
Council of Science Editors:
Zhang L. Automorphic forms on certain affine symmetric spaces. [Doctoral Dissertation]. University of Minnesota; 2011. Available from: http://purl.umn.edu/109867
6. Lim, Li-Mei. Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series.
Degree: PhD, Mathematics, 2013, Brown University
URL: https://repository.library.brown.edu/studio/item/bdr:320644/
Subjects/Keywords: Automorphic forms
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Lim, L. (2013). Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:320644/
Chicago Manual of Style (16th Edition):
Lim, Li-Mei. “Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series.” 2013. Doctoral Dissertation, Brown University. Accessed March 07, 2021. https://repository.library.brown.edu/studio/item/bdr:320644/.
MLA Handbook (7th Edition):
Lim, Li-Mei. “Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series.” 2013. Web. 07 Mar 2021.
Vancouver:
Lim L. Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series. [Internet] [Doctoral dissertation]. Brown University; 2013. [cited 2021 Mar 07]. Available from: https://repository.library.brown.edu/studio/item/bdr:320644/.
Council of Science Editors:
Lim L. Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series. [Doctoral Dissertation]. Brown University; 2013. Available from: https://repository.library.brown.edu/studio/item/bdr:320644/
7. Bajpai, Jitendra K. On Vector-Valued Automorphic Forms.
Degree: PhD, Department of Mathematical and Statistical Sciences, 2015, University of Alberta
URL: https://era.library.ualberta.ca/files/chh63sv954
Subjects/Keywords: Automorphic Forms, Representation Theory; Fuchsian groups, Triangle groups; Vector-valued automorphic forms
…The Borcherds lift associates vvmf for a Weil representation to automorphic forms on… …developing the theory of vector-valued automorphic forms (vvaf) of Fuchsian groups. In… …valued theory of automorphic forms to vector-valued automorphic forms . This chapter is ended… …all . 2.2 Scalar-valued automorphic forms The basics of the theory of classical (i.e… …multiplier of the automorphic forms of G . This thesis mainly explore the theory of automorphic…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Bajpai, J. K. (2015). On Vector-Valued Automorphic Forms. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/chh63sv954
Chicago Manual of Style (16th Edition):
Bajpai, Jitendra K. “On Vector-Valued Automorphic Forms.” 2015. Doctoral Dissertation, University of Alberta. Accessed March 07, 2021. https://era.library.ualberta.ca/files/chh63sv954.
MLA Handbook (7th Edition):
Bajpai, Jitendra K. “On Vector-Valued Automorphic Forms.” 2015. Web. 07 Mar 2021.
Vancouver:
Bajpai JK. On Vector-Valued Automorphic Forms. [Internet] [Doctoral dissertation]. University of Alberta; 2015. [cited 2021 Mar 07]. Available from: https://era.library.ualberta.ca/files/chh63sv954.
Council of Science Editors:
Bajpai JK. On Vector-Valued Automorphic Forms. [Doctoral Dissertation]. University of Alberta; 2015. Available from: https://era.library.ualberta.ca/files/chh63sv954
University of Oklahoma
8. Shukla, Alok. On Klingen Eisenstein series with levels.
Degree: PhD, 2018, University of Oklahoma
URL: http://hdl.handle.net/11244/299326
Subjects/Keywords: Mathematics; Automorphic Representation; Klingen Eisenstein Series with levels; Paramodular; Co-dimension formula for cusp forms
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Shukla, A. (2018). On Klingen Eisenstein series with levels. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/299326
Chicago Manual of Style (16th Edition):
Shukla, Alok. “On Klingen Eisenstein series with levels.” 2018. Doctoral Dissertation, University of Oklahoma. Accessed March 07, 2021. http://hdl.handle.net/11244/299326.
MLA Handbook (7th Edition):
Shukla, Alok. “On Klingen Eisenstein series with levels.” 2018. Web. 07 Mar 2021.
Vancouver:
Shukla A. On Klingen Eisenstein series with levels. [Internet] [Doctoral dissertation]. University of Oklahoma; 2018. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11244/299326.
Council of Science Editors:
Shukla A. On Klingen Eisenstein series with levels. [Doctoral Dissertation]. University of Oklahoma; 2018. Available from: http://hdl.handle.net/11244/299326
9. Moore, Daniel Ross. An Intrinsic Theory of Smooth Automorphic Representations.
Degree: PhD, Mathematics, 2018, The Ohio State University
URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537
Subjects/Keywords: Mathematics; analytic number theory; automorphic representation theory; Schwartz functions; Casselman-Wallach
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Moore, D. R. (2018). An Intrinsic Theory of Smooth Automorphic Representations. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537
Chicago Manual of Style (16th Edition):
Moore, Daniel Ross. “An Intrinsic Theory of Smooth Automorphic Representations.” 2018. Doctoral Dissertation, The Ohio State University. Accessed March 07, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537.
MLA Handbook (7th Edition):
Moore, Daniel Ross. “An Intrinsic Theory of Smooth Automorphic Representations.” 2018. Web. 07 Mar 2021.
Vancouver:
Moore DR. An Intrinsic Theory of Smooth Automorphic Representations. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 Mar 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537.
Council of Science Editors:
Moore DR. An Intrinsic Theory of Smooth Automorphic Representations. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537
University of Ottawa
10. Saber, Hicham. Vector-valued Automorphic Forms and Vector Bundles .
Degree: 2015, University of Ottawa
URL: http://hdl.handle.net/10393/33136
Subjects/Keywords: Automorphic Forms; Vector Bundles
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Saber, H. (2015). Vector-valued Automorphic Forms and Vector Bundles . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/33136
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Saber, Hicham. “Vector-valued Automorphic Forms and Vector Bundles .” 2015. Thesis, University of Ottawa. Accessed March 07, 2021. http://hdl.handle.net/10393/33136.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Saber, Hicham. “Vector-valued Automorphic Forms and Vector Bundles .” 2015. Web. 07 Mar 2021.
Vancouver:
Saber H. Vector-valued Automorphic Forms and Vector Bundles . [Internet] [Thesis]. University of Ottawa; 2015. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10393/33136.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Saber H. Vector-valued Automorphic Forms and Vector Bundles . [Thesis]. University of Ottawa; 2015. Available from: http://hdl.handle.net/10393/33136
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
11. Balkanova, Olga. The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier.
Degree: Docteur es, Mathematiques pures, 2015, Bordeaux; Università degli studi (Milan, Italie)
URL: http://www.theses.fr/2015BORD0053
Subjects/Keywords: Fonctions L; Formes automorphes; Théorie des matrices aléatoires; L functions; Automorphic forms; Random matrix theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Balkanova, O. (2015). The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier. (Doctoral Dissertation). Bordeaux; Università degli studi (Milan, Italie). Retrieved from http://www.theses.fr/2015BORD0053
Chicago Manual of Style (16th Edition):
Balkanova, Olga. “The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier.” 2015. Doctoral Dissertation, Bordeaux; Università degli studi (Milan, Italie). Accessed March 07, 2021. http://www.theses.fr/2015BORD0053.
MLA Handbook (7th Edition):
Balkanova, Olga. “The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier.” 2015. Web. 07 Mar 2021.
Vancouver:
Balkanova O. The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier. [Internet] [Doctoral dissertation]. Bordeaux; Università degli studi (Milan, Italie); 2015. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2015BORD0053.
Council of Science Editors:
Balkanova O. The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier. [Doctoral Dissertation]. Bordeaux; Università degli studi (Milan, Italie); 2015. Available from: http://www.theses.fr/2015BORD0053
12. Robinson, Christine A. On Siegel Maass Wave Forms of Weight 0.
Degree: 2013, University of Illinois – Chicago
URL: http://hdl.handle.net/10027/9982
Subjects/Keywords: number theory; automorphic forms; Siegel modular forms
…attempts at a theory of non-holomorphic Jacobi Maass forms, and establishes a correspondence… …HOLOMORPHIC THEORY 2.1 Siegel modular forms What we now call Siegel modular forms were developed… …kinds of automorphic forms in several complex variables. Various “lifting” theorems have been… …a similarly important role in the theory of Siegel modular forms. Let G = GSp(2g, Q… …of the Langlands automorphic L-function, corresponding to the spinor representation of the…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Robinson, C. A. (2013). On Siegel Maass Wave Forms of Weight 0. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9982
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Thesis, University of Illinois – Chicago. Accessed March 07, 2021. http://hdl.handle.net/10027/9982.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Web. 07 Mar 2021.
Vancouver:
Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10027/9982.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/9982
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
University of Minnesota
13. Sands, Adrienne. Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas.
Degree: PhD, Mathematics, 2020, University of Minnesota
URL: http://hdl.handle.net/11299/217155
Subjects/Keywords: Automorphic forms; Automorphic Hamiltonian; Automorphic Schwartz space; Degenerate Eisenstein series; Epstein zeta functions
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Sands, A. (2020). Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/217155
Chicago Manual of Style (16th Edition):
Sands, Adrienne. “Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas.” 2020. Doctoral Dissertation, University of Minnesota. Accessed March 07, 2021. http://hdl.handle.net/11299/217155.
MLA Handbook (7th Edition):
Sands, Adrienne. “Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas.” 2020. Web. 07 Mar 2021.
Vancouver:
Sands A. Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas. [Internet] [Doctoral dissertation]. University of Minnesota; 2020. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11299/217155.
Council of Science Editors:
Sands A. Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas. [Doctoral Dissertation]. University of Minnesota; 2020. Available from: http://hdl.handle.net/11299/217155
14. Allen, Patrick. Modularity of nearly ordinary 2-adic residually dihedral Galois representations.
Degree: Mathematics, 2012, UCLA
URL: http://www.escholarship.org/uc/item/1nk3w1xd
Subjects/Keywords: Mathematics; Automorphic forms; Galois representations; Number theory
…automorphic forms, are what is known as modularity lifting theorems. Given a Galois representation… …between Galois representations and automorphic forms. Galois representations arise quite… …deduce properties of the geometric object. Automorphic forms are certain complex analytic… …modular forms. A priori, automorphic forms and Galois representations don’t appear to have… …analysis. The idea that arithmetic objects should have automorphic forms associated to them was…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Allen, P. (2012). Modularity of nearly ordinary 2-adic residually dihedral Galois representations. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/1nk3w1xd
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Allen, Patrick. “Modularity of nearly ordinary 2-adic residually dihedral Galois representations.” 2012. Thesis, UCLA. Accessed March 07, 2021. http://www.escholarship.org/uc/item/1nk3w1xd.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Allen, Patrick. “Modularity of nearly ordinary 2-adic residually dihedral Galois representations.” 2012. Web. 07 Mar 2021.
Vancouver:
Allen P. Modularity of nearly ordinary 2-adic residually dihedral Galois representations. [Internet] [Thesis]. UCLA; 2012. [cited 2021 Mar 07]. Available from: http://www.escholarship.org/uc/item/1nk3w1xd.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Allen P. Modularity of nearly ordinary 2-adic residually dihedral Galois representations. [Thesis]. UCLA; 2012. Available from: http://www.escholarship.org/uc/item/1nk3w1xd
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
University of Cambridge
15. Chen, Cangxiong. ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|.
Degree: PhD, 2015, University of Cambridge
Subjects/Keywords: Algebraic number theory; Automorphic forms; Asai's function; Eisenstein series; Kronecker Limit Formula; L-functions; Rankin-Selberg integral
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Chen, C. (2015). ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/306109https://www.repository.cam.ac.uk/bitstream/1810/306109/2/license.txt
Chicago Manual of Style (16th Edition):
Chen, Cangxiong. “ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|.” 2015. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://www.repository.cam.ac.uk/handle/1810/306109https://www.repository.cam.ac.uk/bitstream/1810/306109/2/license.txt.
MLA Handbook (7th Edition):
Chen, Cangxiong. “ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|.” 2015. Web. 07 Mar 2021.
Vancouver:
Chen C. ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2021 Mar 07]. Available from: https://www.repository.cam.ac.uk/handle/1810/306109https://www.repository.cam.ac.uk/bitstream/1810/306109/2/license.txt.
Council of Science Editors:
Chen C. ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/306109https://www.repository.cam.ac.uk/bitstream/1810/306109/2/license.txt
16. Jung, Junehyuk. On the zeros of automorphic forms .
Degree: PhD, 2013, Princeton University
URL: http://arks.princeton.edu/ark:/88435/dsp01fx719m52n
Subjects/Keywords: Automorphic forms; Number theory; Spectral geometry
…77 8.2 Dihedral forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78… …B if A = B + o(B) as B → ∞. 1 Part I Nodal lines of Maass cusp forms 2… …x28;T 5/6+ ) forms within the set of even Maass-Hecke cusp forms in {φ | T < τφ… …are ∼ T /24 even Maass-Hecke cusp forms in {φ | T < τφ < T + 1}. The assumption of… …fixed geodesic segment β ⊂ δ, all but O (T 1/3+ ) forms within the set of even Maass…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jung, J. (2013). On the zeros of automorphic forms . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01fx719m52n
Chicago Manual of Style (16th Edition):
Jung, Junehyuk. “On the zeros of automorphic forms .” 2013. Doctoral Dissertation, Princeton University. Accessed March 07, 2021. http://arks.princeton.edu/ark:/88435/dsp01fx719m52n.
MLA Handbook (7th Edition):
Jung, Junehyuk. “On the zeros of automorphic forms .” 2013. Web. 07 Mar 2021.
Vancouver:
Jung J. On the zeros of automorphic forms . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2021 Mar 07]. Available from: http://arks.princeton.edu/ark:/88435/dsp01fx719m52n.
Council of Science Editors:
Jung J. On the zeros of automorphic forms . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01fx719m52n
University of Cambridge
17. Chen, Cangxiong. On Asai's function analogous to log |η(z)|.
Degree: PhD, 2015, University of Cambridge
URL: https://doi.org/10.17863/CAM.53187
;
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989
Subjects/Keywords: Algebraic number theory; Automorphic forms; Asai's function; Eisenstein series; Kronecker Limit Formula; L-functions; Rankin-Selberg integral
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Chen, C. (2015). On Asai's function analogous to log |η(z)|. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.53187 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989
Chicago Manual of Style (16th Edition):
Chen, Cangxiong. “On Asai's function analogous to log |η(z)|.” 2015. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://doi.org/10.17863/CAM.53187 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989.
MLA Handbook (7th Edition):
Chen, Cangxiong. “On Asai's function analogous to log |η(z)|.” 2015. Web. 07 Mar 2021.
Vancouver:
Chen C. On Asai's function analogous to log |η(z)|. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2021 Mar 07]. Available from: https://doi.org/10.17863/CAM.53187 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989.
Council of Science Editors:
Chen C. On Asai's function analogous to log |η(z)|. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://doi.org/10.17863/CAM.53187 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989
Princeton University
18. Su, Jun. Coherent cohomology of Shimura varieties and automorphic forms .
Degree: PhD, 2019, Princeton University
URL: http://arks.princeton.edu/ark:/88435/dsp010p096979s
Subjects/Keywords: automorphic forms; automorphic vector bundles; Shimura varieties; toroidal compactifications
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Su, J. (2019). Coherent cohomology of Shimura varieties and automorphic forms . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp010p096979s
Chicago Manual of Style (16th Edition):
Su, Jun. “Coherent cohomology of Shimura varieties and automorphic forms .” 2019. Doctoral Dissertation, Princeton University. Accessed March 07, 2021. http://arks.princeton.edu/ark:/88435/dsp010p096979s.
MLA Handbook (7th Edition):
Su, Jun. “Coherent cohomology of Shimura varieties and automorphic forms .” 2019. Web. 07 Mar 2021.
Vancouver:
Su J. Coherent cohomology of Shimura varieties and automorphic forms . [Internet] [Doctoral dissertation]. Princeton University; 2019. [cited 2021 Mar 07]. Available from: http://arks.princeton.edu/ark:/88435/dsp010p096979s.
Council of Science Editors:
Su J. Coherent cohomology of Shimura varieties and automorphic forms . [Doctoral Dissertation]. Princeton University; 2019. Available from: http://arks.princeton.edu/ark:/88435/dsp010p096979s
University of Ottawa
19. Mousaaid, Youssef. Convers Theorems of Borcherds Products .
Degree: 2018, University of Ottawa
URL: http://hdl.handle.net/10393/38405
Subjects/Keywords: Borcherds products; Heegner divisors; Automorphic forms
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Mousaaid, Y. (2018). Convers Theorems of Borcherds Products . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/38405
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Mousaaid, Youssef. “Convers Theorems of Borcherds Products .” 2018. Thesis, University of Ottawa. Accessed March 07, 2021. http://hdl.handle.net/10393/38405.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Mousaaid, Youssef. “Convers Theorems of Borcherds Products .” 2018. Web. 07 Mar 2021.
Vancouver:
Mousaaid Y. Convers Theorems of Borcherds Products . [Internet] [Thesis]. University of Ottawa; 2018. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10393/38405.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Mousaaid Y. Convers Theorems of Borcherds Products . [Thesis]. University of Ottawa; 2018. Available from: http://hdl.handle.net/10393/38405
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
University of Melbourne
20. McAndrew, Angus William. Galois representations and theta operators for Siegel modular forms.
Degree: 2015, University of Melbourne
URL: http://hdl.handle.net/11343/57014
Subjects/Keywords: number theory; representation theory; algebraic geometry; Galois representations; modular forms; Siegel modular forms; Serre's conjecture
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
McAndrew, A. W. (2015). Galois representations and theta operators for Siegel modular forms. (Masters Thesis). University of Melbourne. Retrieved from http://hdl.handle.net/11343/57014
Chicago Manual of Style (16th Edition):
McAndrew, Angus William. “Galois representations and theta operators for Siegel modular forms.” 2015. Masters Thesis, University of Melbourne. Accessed March 07, 2021. http://hdl.handle.net/11343/57014.
MLA Handbook (7th Edition):
McAndrew, Angus William. “Galois representations and theta operators for Siegel modular forms.” 2015. Web. 07 Mar 2021.
Vancouver:
McAndrew AW. Galois representations and theta operators for Siegel modular forms. [Internet] [Masters thesis]. University of Melbourne; 2015. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11343/57014.
Council of Science Editors:
McAndrew AW. Galois representations and theta operators for Siegel modular forms. [Masters Thesis]. University of Melbourne; 2015. Available from: http://hdl.handle.net/11343/57014
21. Alluhaibi, Nadia. On vector-valued automorphic forms on bounded symmetric domains.
Degree: 2017, University of Western Ontario
URL: https://ir.lib.uwo.ca/etd/4498
Subjects/Keywords: automorphic forms; asymptotics; poincare series; bounded domains; modular forms; bergman kernel; hyperbolic space; Algebraic Geometry; Analysis; Geometry and Topology; Number Theory; Physical Sciences and Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Alluhaibi, N. (2017). On vector-valued automorphic forms on bounded symmetric domains. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/4498
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Alluhaibi, Nadia. “On vector-valued automorphic forms on bounded symmetric domains.” 2017. Thesis, University of Western Ontario. Accessed March 07, 2021. https://ir.lib.uwo.ca/etd/4498.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Alluhaibi, Nadia. “On vector-valued automorphic forms on bounded symmetric domains.” 2017. Web. 07 Mar 2021.
Vancouver:
Alluhaibi N. On vector-valued automorphic forms on bounded symmetric domains. [Internet] [Thesis]. University of Western Ontario; 2017. [cited 2021 Mar 07]. Available from: https://ir.lib.uwo.ca/etd/4498.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Alluhaibi N. On vector-valued automorphic forms on bounded symmetric domains. [Thesis]. University of Western Ontario; 2017. Available from: https://ir.lib.uwo.ca/etd/4498
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
University of Hong Kong
22. Fung, King-cheong. Modular forms of small weight and their applications.
Degree: 2017, University of Hong Kong
URL: http://hdl.handle.net/10722/249204
Subjects/Keywords: Automorphic forms; Forms, Modular
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Fung, K. (2017). Modular forms of small weight and their applications. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/249204
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Fung, King-cheong. “Modular forms of small weight and their applications.” 2017. Thesis, University of Hong Kong. Accessed March 07, 2021. http://hdl.handle.net/10722/249204.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Fung, King-cheong. “Modular forms of small weight and their applications.” 2017. Web. 07 Mar 2021.
Vancouver:
Fung K. Modular forms of small weight and their applications. [Internet] [Thesis]. University of Hong Kong; 2017. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10722/249204.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Fung K. Modular forms of small weight and their applications. [Thesis]. University of Hong Kong; 2017. Available from: http://hdl.handle.net/10722/249204
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
23. Nguyen, Manh Tu. Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1).
Degree: Docteur es, Mathématiques, 2020, Lyon
URL: http://www.theses.fr/2020LYSEN009
Subjects/Keywords: Variété de Shimura; Forme automorphe p-adique; Modularité; Overconvergent automorphic forms; Shimura variety; P-adic automorphic forms; Modularity; Overconvergent forms
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Nguyen, M. T. (2020). Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1). (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2020LYSEN009
Chicago Manual of Style (16th Edition):
Nguyen, Manh Tu. “Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1).” 2020. Doctoral Dissertation, Lyon. Accessed March 07, 2021. http://www.theses.fr/2020LYSEN009.
MLA Handbook (7th Edition):
Nguyen, Manh Tu. “Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1).” 2020. Web. 07 Mar 2021.
Vancouver:
Nguyen MT. Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1). [Internet] [Doctoral dissertation]. Lyon; 2020. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2020LYSEN009.
Council of Science Editors:
Nguyen MT. Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1). [Doctoral Dissertation]. Lyon; 2020. Available from: http://www.theses.fr/2020LYSEN009
University of Hong Kong
24. 徐晨. On a mean value of twisted automorphic L-functions.
Degree: 2008, University of Hong Kong
URL: http://hdl.handle.net/10722/51868
Subjects/Keywords: L-functions.; Automorphic forms.
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
徐晨. (2008). On a mean value of twisted automorphic L-functions. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/51868
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
徐晨. “On a mean value of twisted automorphic L-functions.” 2008. Thesis, University of Hong Kong. Accessed March 07, 2021. http://hdl.handle.net/10722/51868.
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
徐晨. “On a mean value of twisted automorphic L-functions.” 2008. Web. 07 Mar 2021.
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Vancouver:
徐晨. On a mean value of twisted automorphic L-functions. [Internet] [Thesis]. University of Hong Kong; 2008. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10722/51868.
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
徐晨. On a mean value of twisted automorphic L-functions. [Thesis]. University of Hong Kong; 2008. Available from: http://hdl.handle.net/10722/51868
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation
Princeton University
25. Varma, Ila. On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn .
Degree: PhD, 2015, Princeton University
URL: http://arks.princeton.edu/ark:/88435/dsp01g158bk68k
Subjects/Keywords: Galois representations; Langlands program; p-adic automorphic forms
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Varma, I. (2015). On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01g158bk68k
Chicago Manual of Style (16th Edition):
Varma, Ila. “On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn .” 2015. Doctoral Dissertation, Princeton University. Accessed March 07, 2021. http://arks.princeton.edu/ark:/88435/dsp01g158bk68k.
MLA Handbook (7th Edition):
Varma, Ila. “On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn .” 2015. Web. 07 Mar 2021.
Vancouver:
Varma I. On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn . [Internet] [Doctoral dissertation]. Princeton University; 2015. [cited 2021 Mar 07]. Available from: http://arks.princeton.edu/ark:/88435/dsp01g158bk68k.
Council of Science Editors:
Varma I. On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn . [Doctoral Dissertation]. Princeton University; 2015. Available from: http://arks.princeton.edu/ark:/88435/dsp01g158bk68k
The Ohio State University
26. Brewster, Stephen Thomas. Automorphisms of the cohomology ring of finite Grassmann manifolds.
Degree: PhD, Graduate School, 1978, The Ohio State University
URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354
Subjects/Keywords: Mathematics; Automorphic forms; Manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Brewster, S. T. (1978). Automorphisms of the cohomology ring of finite Grassmann manifolds. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354
Chicago Manual of Style (16th Edition):
Brewster, Stephen Thomas. “Automorphisms of the cohomology ring of finite Grassmann manifolds.” 1978. Doctoral Dissertation, The Ohio State University. Accessed March 07, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354.
MLA Handbook (7th Edition):
Brewster, Stephen Thomas. “Automorphisms of the cohomology ring of finite Grassmann manifolds.” 1978. Web. 07 Mar 2021.
Vancouver:
Brewster ST. Automorphisms of the cohomology ring of finite Grassmann manifolds. [Internet] [Doctoral dissertation]. The Ohio State University; 1978. [cited 2021 Mar 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354.
Council of Science Editors:
Brewster ST. Automorphisms of the cohomology ring of finite Grassmann manifolds. [Doctoral Dissertation]. The Ohio State University; 1978. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354
27. Savala, Paul. Computing spectral data for Maass cusp forms using resonance.
Degree: PhD, Mathematics, 2016, University of Iowa
URL: https://ir.uiowa.edu/etd/3182
Subjects/Keywords: publicabstract; automorphic forms; laplace eigenvalue; maass forms; number theory; resonance; Mathematics
…Maass forms show up in the larger theory. A Maass form can be lifted to an automorphic… …1 2 2 5 6 2 COMPUTATION OF AUTOMORPHIC FORMS . . . . . . . . . . . . 11 1.4 2.1 2.2… …2.3 2.4 2.5 Automorphic Forms and the Riemann Zeta Function Modular Forms… …55 viii 1 CHAPTER 1 INTRODUCTION AND BACKGROUND 1.1 Automorphic Forms and the Riemann… …the same key properties. These functions are known as “automorphic forms.” 2 1.2 Modular…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Savala, P. (2016). Computing spectral data for Maass cusp forms using resonance. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/3182
Chicago Manual of Style (16th Edition):
Savala, Paul. “Computing spectral data for Maass cusp forms using resonance.” 2016. Doctoral Dissertation, University of Iowa. Accessed March 07, 2021. https://ir.uiowa.edu/etd/3182.
MLA Handbook (7th Edition):
Savala, Paul. “Computing spectral data for Maass cusp forms using resonance.” 2016. Web. 07 Mar 2021.
Vancouver:
Savala P. Computing spectral data for Maass cusp forms using resonance. [Internet] [Doctoral dissertation]. University of Iowa; 2016. [cited 2021 Mar 07]. Available from: https://ir.uiowa.edu/etd/3182.
Council of Science Editors:
Savala P. Computing spectral data for Maass cusp forms using resonance. [Doctoral Dissertation]. University of Iowa; 2016. Available from: https://ir.uiowa.edu/etd/3182
University of Michigan
28. Klosin, Krzysztof. Congruences among automorphic forms on the unitary group U(2,2).
Degree: PhD, Pure Sciences, 2006, University of Michigan
URL: http://hdl.handle.net/2027.42/126079
Subjects/Keywords: Automorphic Forms; Bloch-kato Conjecture; Congruences; Galois Representation; Galois Representations; L-functions; Selmer Group; Unitary Group U(2,2)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Klosin, K. (2006). Congruences among automorphic forms on the unitary group U(2,2). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126079
Chicago Manual of Style (16th Edition):
Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Doctoral Dissertation, University of Michigan. Accessed March 07, 2021. http://hdl.handle.net/2027.42/126079.
MLA Handbook (7th Edition):
Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Web. 07 Mar 2021.
Vancouver:
Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Internet] [Doctoral dissertation]. University of Michigan; 2006. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2027.42/126079.
Council of Science Editors:
Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Doctoral Dissertation]. University of Michigan; 2006. Available from: http://hdl.handle.net/2027.42/126079
29. Conti, Andrea. Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms.
Degree: Docteur es, Mathématiques, 2016, Sorbonne Paris Cité
URL: http://www.theses.fr/2016USPCD081
Subjects/Keywords: Image de Galois; Familles p-adiques; Formes automorphes; Galois representations; Automorphic forms; P-Adic families
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Conti, A. (2016). Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2016USPCD081
Chicago Manual of Style (16th Edition):
Conti, Andrea. “Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms.” 2016. Doctoral Dissertation, Sorbonne Paris Cité. Accessed March 07, 2021. http://www.theses.fr/2016USPCD081.
MLA Handbook (7th Edition):
Conti, Andrea. “Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms.” 2016. Web. 07 Mar 2021.
Vancouver:
Conti A. Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2016. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2016USPCD081.
Council of Science Editors:
Conti A. Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms. [Doctoral Dissertation]. Sorbonne Paris Cité; 2016. Available from: http://www.theses.fr/2016USPCD081
ETH Zürich
30. Jana, Subhajit. Analytic Newvectors for GL(n,R) and Applications.
Degree: 2020, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/418883
Subjects/Keywords: Newvector; L-function; Automorphic forms; Whittaker functions; info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jana, S. (2020). Analytic Newvectors for GL(n,R) and Applications. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/418883
Chicago Manual of Style (16th Edition):
Jana, Subhajit. “Analytic Newvectors for GL(n,R) and Applications.” 2020. Doctoral Dissertation, ETH Zürich. Accessed March 07, 2021. http://hdl.handle.net/20.500.11850/418883.
MLA Handbook (7th Edition):
Jana, Subhajit. “Analytic Newvectors for GL(n,R) and Applications.” 2020. Web. 07 Mar 2021.
Vancouver:
Jana S. Analytic Newvectors for GL(n,R) and Applications. [Internet] [Doctoral dissertation]. ETH Zürich; 2020. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/20.500.11850/418883.
Council of Science Editors:
Jana S. Analytic Newvectors for GL(n,R) and Applications. [Doctoral Dissertation]. ETH Zürich; 2020. Available from: http://hdl.handle.net/20.500.11850/418883