Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Automorphic Forms Representation Theory)`

.
Showing records 1 – 30 of
75099 total matches.

◁ [1] [2] [3] [4] [5] … [2504] ▶

Search Limiters

Dates

- 2017 – 2021 (19625)
- 2012 – 2016 (29862)
- 2007 – 2011 (17194)
- 2002 – 2006 (5382)
- 1997 – 2001 (2354)
- 1992 – 1996 (1503)
- 1987 – 1991 (1083)
- 1982 – 1986 (907)
- 1977 – 1981 (677)
- 1972 – 1976 (693)

Universities

- ETH Zürich (1124)
- University of São Paulo (1049)
- The Ohio State University (949)
- Uppsala University (887)
- Virginia Tech (791)
- University of Georgia (780)
- University of Texas – Austin (751)
- University of Michigan (749)
- University of Birmingham (738)
- Michigan State University (732)
- NSYSU (715)
- Georgia Tech (692)
- Universitetet i Tromsø (688)
- University of Glasgow (643)
- University of Oxford (596)

Department

- Mathematics (1423)
- Psychology (825)
- Physics (717)
- Economics (555)
- English (540)
- Education (513)
- Computer Science (511)
- Sociology (510)
- Political Science (473)
- Electrical and Computer Engineering (367)
- Electrical Engineering (347)
- Philosophy (337)
- Informatique (306)
- Social Sciences (298)
- Statistics (295)

Degrees

- PhD (19256)
- Docteur es (3125)
- MS (2526)
- MA (2465)
- Master (1003)
- Mestrado (587)
- EdD (426)
- phd (294)
- d_ph (231)
- Doctor of Education (EdD) (165)
- Thesis (EdD) (139)
- MFA (121)
- MM (104)
- MSc (99)
- m_ph (82)

Levels

- doctoral (30737)
- masters (11088)
- thesis (1041)
- d_ph (231)
- dissertation (224)
- doctor of philosophy ph.d. (127)
- thesis - unrestricted (124)
- m_ph (82)
- project (53)
- doctor of philosophy (ph.d.) (45)

Languages

Country

- US (28790)
- UK (7164)
- Sweden (6447)
- Canada (5437)
- Brazil (4367)
- France (3125)
- Australia (2961)
- Netherlands (2130)
- South Africa (2103)
- Greece (1149)
- Switzerland (1130)
- New Zealand (1064)
- Taiwan (715)
- Hong Kong (708)
- Norway (690)

▼ Search Limiters

University of Oklahoma

1. Wagh, Siddhesh. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.

Degree: PhD, 2019, University of Oklahoma

URL: http://hdl.handle.net/11244/321131

► Muto, Narita and Pitale construct counterexamples to the Generalized Ramanujan Conjecture for GL(2,B) over the division quaternion algebra B with discriminant two via a lift…
(more)

Subjects/Keywords: Number Theory; Automorphic forms; Representation Theory; Maass forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wagh, S. (2019). MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/321131

Chicago Manual of Style (16^{th} Edition):

Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed March 07, 2021. http://hdl.handle.net/11244/321131.

MLA Handbook (7^{th} Edition):

Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Web. 07 Mar 2021.

Vancouver:

Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11244/321131.

Council of Science Editors:

Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/321131

Harvard University

2. Raskin, Samuel David. Chiral Principal Series Categories.

Degree: PhD, Mathematics, 2014, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

►

This thesis begins a study of principal series categories in geometric *representation* *theory* using the Beilinson-Drinfeld *theory* of chiral algebras. We study Whittaker objects in…
(more)

Subjects/Keywords: Mathematics; Algebra; Algebraic geometry; Automorphic forms; Geometric Langlands; Representation theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Raskin, S. D. (2014). Chiral Principal Series Categories. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

Chicago Manual of Style (16^{th} Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Doctoral Dissertation, Harvard University. Accessed March 07, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

MLA Handbook (7^{th} Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Web. 07 Mar 2021.

Vancouver:

Raskin SD. Chiral Principal Series Categories. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Mar 07]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

Council of Science Editors:

Raskin SD. Chiral Principal Series Categories. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

3. File, Daniel Whitman. On the degree 5 L-function for GSp(4).

Degree: PhD, Mathematics, 2010, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891

► In this dissertation I establish a new integral *representation* for the degree five <i>L</i>-function for the group GSp_{4}. Let <i>F</i> be a number field and…
(more)

Subjects/Keywords: Mathematics; automorphic forms; representation theory; number theory

…proposed several conjectures relating *automorphic* *representation* *theory* to number *theory* [25… …determine whether
it is the L-function of an *automorphic* *representation*. Such a result is known as… …*representation* π = ⊗v πv of an adelic algebraic group G(A) is *automorphic*.
The converse… …Dirichlet series that are twisted by GL2 *automorphic* *forms*.
Suppose that f is a cuspidal elliptic… …space of *automorphic* *forms*.
1.3
The Degree Five L-function
In [1] Andrianov and…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

File, D. W. (2010). On the degree 5 L-function for GSp(4). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891

Chicago Manual of Style (16^{th} Edition):

File, Daniel Whitman. “On the degree 5 L-function for GSp(4).” 2010. Doctoral Dissertation, The Ohio State University. Accessed March 07, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891.

MLA Handbook (7^{th} Edition):

File, Daniel Whitman. “On the degree 5 L-function for GSp(4).” 2010. Web. 07 Mar 2021.

Vancouver:

File DW. On the degree 5 L-function for GSp(4). [Internet] [Doctoral dissertation]. The Ohio State University; 2010. [cited 2021 Mar 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891.

Council of Science Editors:

File DW. On the degree 5 L-function for GSp(4). [Doctoral Dissertation]. The Ohio State University; 2010. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891

Temple University

4.
Daughton, Austin James Chinault.
Hecke Correspondence for *Automorphic* Integrals with Infinite Log-Polynomial Periods.

Degree: PhD, 2012, Temple University

URL: http://digital.library.temple.edu/u?/p245801coll10,162078

►

Mathematics

Since Hecke first proved his correspondence between Dirichlet series with functional equations and *automorphic* *forms*, there have been a great number of generalizations. Of…
(more)

Subjects/Keywords: Mathematics; automorphic forms; automorphic integrals; hecke correspondence; number theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Daughton, A. J. C. (2012). Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods. (Doctoral Dissertation). Temple University. Retrieved from http://digital.library.temple.edu/u?/p245801coll10,162078

Chicago Manual of Style (16^{th} Edition):

Daughton, Austin James Chinault. “Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods.” 2012. Doctoral Dissertation, Temple University. Accessed March 07, 2021. http://digital.library.temple.edu/u?/p245801coll10,162078.

MLA Handbook (7^{th} Edition):

Daughton, Austin James Chinault. “Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods.” 2012. Web. 07 Mar 2021.

Vancouver:

Daughton AJC. Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods. [Internet] [Doctoral dissertation]. Temple University; 2012. [cited 2021 Mar 07]. Available from: http://digital.library.temple.edu/u?/p245801coll10,162078.

Council of Science Editors:

Daughton AJC. Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods. [Doctoral Dissertation]. Temple University; 2012. Available from: http://digital.library.temple.edu/u?/p245801coll10,162078

University of Minnesota

5.
Zhang, Lei.
*Automorphic**forms* on certain affine symmetric spaces.

Degree: PhD, Mathematics, 2011, University of Minnesota

URL: http://purl.umn.edu/109867

► In this thesis, we consider *automorphic* periods associated to certain affine symmetric spaces such as the symmetric pairs. In this thesis, we consider *automorphic* periods…
(more)

Subjects/Keywords: Automorphic forms; Distinguished tame supercuspidal representation; Gelfand pairs; Number theory; special value of L-function; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhang, L. (2011). Automorphic forms on certain affine symmetric spaces. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/109867

Chicago Manual of Style (16^{th} Edition):

Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Doctoral Dissertation, University of Minnesota. Accessed March 07, 2021. http://purl.umn.edu/109867.

MLA Handbook (7^{th} Edition):

Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Web. 07 Mar 2021.

Vancouver:

Zhang L. Automorphic forms on certain affine symmetric spaces. [Internet] [Doctoral dissertation]. University of Minnesota; 2011. [cited 2021 Mar 07]. Available from: http://purl.umn.edu/109867.

Council of Science Editors:

Zhang L. Automorphic forms on certain affine symmetric spaces. [Doctoral Dissertation]. University of Minnesota; 2011. Available from: http://purl.umn.edu/109867

6. Lim, Li-Mei. Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series.

Degree: PhD, Mathematics, 2013, Brown University

URL: https://repository.library.brown.edu/studio/item/bdr:320644/

► In this disseration, we generalize the classical result relating special values of the real analytic GL2 Eisenstein series to the product of the Riemann zeta…
(more)

Subjects/Keywords: Automorphic forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lim, L. (2013). Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:320644/

Chicago Manual of Style (16^{th} Edition):

Lim, Li-Mei. “Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series.” 2013. Doctoral Dissertation, Brown University. Accessed March 07, 2021. https://repository.library.brown.edu/studio/item/bdr:320644/.

MLA Handbook (7^{th} Edition):

Lim, Li-Mei. “Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series.” 2013. Web. 07 Mar 2021.

Vancouver:

Lim L. Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series. [Internet] [Doctoral dissertation]. Brown University; 2013. [cited 2021 Mar 07]. Available from: https://repository.library.brown.edu/studio/item/bdr:320644/.

Council of Science Editors:

Lim L. Multiple Dirichlet Series Associated to Prehomogeneous Vector Spaces and the Relation with GL3(Z) Eisenstein Series. [Doctoral Dissertation]. Brown University; 2013. Available from: https://repository.library.brown.edu/studio/item/bdr:320644/

7.
Bajpai, Jitendra K.
On Vector-Valued *Automorphic* * Forms*.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2015, University of Alberta

URL: https://era.library.ualberta.ca/files/chh63sv954

► Let \rG be a genus 0 Fuchsian group of the first kind\,, w ∈ 2\Z and ρ : \rG \longrightarrow \mr{GL}_{d}(\C) be any admissible *representation*…
(more)

Subjects/Keywords: Automorphic Forms, Representation Theory; Fuchsian groups, Triangle groups; Vector-valued automorphic forms

…The
Borcherds lift associates vvmf for a Weil *representation* to *automorphic* *forms*
on… …developing the *theory*
of vector-valued *automorphic* *forms* (vvaf) of Fuchsian groups. In… …valued *theory* of *automorphic*
*forms* to vector-valued *automorphic* *forms* . This chapter is ended… …all .
2.2
Scalar-valued *automorphic* *forms*
The basics of the *theory* of classical (i.e… …multiplier of the
*automorphic* *forms* of G . This thesis mainly explore the *theory* of *automorphic*…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bajpai, J. K. (2015). On Vector-Valued Automorphic Forms. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/chh63sv954

Chicago Manual of Style (16^{th} Edition):

Bajpai, Jitendra K. “On Vector-Valued Automorphic Forms.” 2015. Doctoral Dissertation, University of Alberta. Accessed March 07, 2021. https://era.library.ualberta.ca/files/chh63sv954.

MLA Handbook (7^{th} Edition):

Bajpai, Jitendra K. “On Vector-Valued Automorphic Forms.” 2015. Web. 07 Mar 2021.

Vancouver:

Bajpai JK. On Vector-Valued Automorphic Forms. [Internet] [Doctoral dissertation]. University of Alberta; 2015. [cited 2021 Mar 07]. Available from: https://era.library.ualberta.ca/files/chh63sv954.

Council of Science Editors:

Bajpai JK. On Vector-Valued Automorphic Forms. [Doctoral Dissertation]. University of Alberta; 2015. Available from: https://era.library.ualberta.ca/files/chh63sv954

University of Oklahoma

8. Shukla, Alok. On Klingen Eisenstein series with levels.

Degree: PhD, 2018, University of Oklahoma

URL: http://hdl.handle.net/11244/299326

► We give a *representation* theoretic approach to the Klingen lift generalizing the classical construction of Klingen Eisenstein series to arbitrary level for both paramodular and…
(more)

Subjects/Keywords: Mathematics; Automorphic Representation; Klingen Eisenstein Series with levels; Paramodular; Co-dimension formula for cusp forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shukla, A. (2018). On Klingen Eisenstein series with levels. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/299326

Chicago Manual of Style (16^{th} Edition):

Shukla, Alok. “On Klingen Eisenstein series with levels.” 2018. Doctoral Dissertation, University of Oklahoma. Accessed March 07, 2021. http://hdl.handle.net/11244/299326.

MLA Handbook (7^{th} Edition):

Shukla, Alok. “On Klingen Eisenstein series with levels.” 2018. Web. 07 Mar 2021.

Vancouver:

Shukla A. On Klingen Eisenstein series with levels. [Internet] [Doctoral dissertation]. University of Oklahoma; 2018. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11244/299326.

Council of Science Editors:

Shukla A. On Klingen Eisenstein series with levels. [Doctoral Dissertation]. University of Oklahoma; 2018. Available from: http://hdl.handle.net/11244/299326

9.
Moore, Daniel Ross.
An Intrinsic *Theory* of Smooth *Automorphic*
Representations.

Degree: PhD, Mathematics, 2018, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537

► Our goal in this paper is to lay the foundation for a *theory* of smooth *automorphic* *forms* and representations on local and adelic reductive groups…
(more)

Subjects/Keywords: Mathematics; analytic number theory; automorphic representation theory; Schwartz functions; Casselman-Wallach

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moore, D. R. (2018). An Intrinsic Theory of Smooth Automorphic Representations. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537

Chicago Manual of Style (16^{th} Edition):

Moore, Daniel Ross. “An Intrinsic Theory of Smooth Automorphic Representations.” 2018. Doctoral Dissertation, The Ohio State University. Accessed March 07, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537.

MLA Handbook (7^{th} Edition):

Moore, Daniel Ross. “An Intrinsic Theory of Smooth Automorphic Representations.” 2018. Web. 07 Mar 2021.

Vancouver:

Moore DR. An Intrinsic Theory of Smooth Automorphic Representations. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 Mar 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537.

Council of Science Editors:

Moore DR. An Intrinsic Theory of Smooth Automorphic Representations. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537

University of Ottawa

10.
Saber, Hicham.
Vector-valued *Automorphic* *Forms* and Vector Bundles
.

Degree: 2015, University of Ottawa

URL: http://hdl.handle.net/10393/33136

► In this thesis we prove the existence of vector-valued *automorphic* *forms* for an arbitrary Fuchsian group and an arbitrary finite dimensional complex *representation* of this…
(more)

Subjects/Keywords: Automorphic Forms; Vector Bundles

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Saber, H. (2015). Vector-valued Automorphic Forms and Vector Bundles . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/33136

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Saber, Hicham. “Vector-valued Automorphic Forms and Vector Bundles .” 2015. Thesis, University of Ottawa. Accessed March 07, 2021. http://hdl.handle.net/10393/33136.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Saber, Hicham. “Vector-valued Automorphic Forms and Vector Bundles .” 2015. Web. 07 Mar 2021.

Vancouver:

Saber H. Vector-valued Automorphic Forms and Vector Bundles . [Internet] [Thesis]. University of Ottawa; 2015. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10393/33136.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Saber H. Vector-valued Automorphic Forms and Vector Bundles . [Thesis]. University of Ottawa; 2015. Available from: http://hdl.handle.net/10393/33136

Not specified: Masters Thesis or Doctoral Dissertation

11.
Balkanova, Olga.
The fourth moment of *automorphic* L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier.

Degree: Docteur es, Mathematiques pures, 2015, Bordeaux; Università degli studi (Milan, Italie)

URL: http://www.theses.fr/2015BORD0053

►

Le résultat principal de cette thèse est une formule asymptotique pour le quatrième moment des fonctions L automorphes de niveau p', où p est un… (more)

Subjects/Keywords: Fonctions L; Formes automorphes; Théorie des matrices aléatoires; L functions; Automorphic forms; Random matrix theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Balkanova, O. (2015). The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier. (Doctoral Dissertation). Bordeaux; Università degli studi (Milan, Italie). Retrieved from http://www.theses.fr/2015BORD0053

Chicago Manual of Style (16^{th} Edition):

Balkanova, Olga. “The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier.” 2015. Doctoral Dissertation, Bordeaux; Università degli studi (Milan, Italie). Accessed March 07, 2021. http://www.theses.fr/2015BORD0053.

MLA Handbook (7^{th} Edition):

Balkanova, Olga. “The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier.” 2015. Web. 07 Mar 2021.

Vancouver:

Balkanova O. The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier. [Internet] [Doctoral dissertation]. Bordeaux; Università degli studi (Milan, Italie); 2015. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2015BORD0053.

Council of Science Editors:

Balkanova O. The fourth moment of automorphic L-functions at prime power level : Le quatrième moment de fonctions L automorphes de niveau une grande puissance d'un nombre premier. [Doctoral Dissertation]. Bordeaux; Università degli studi (Milan, Italie); 2015. Available from: http://www.theses.fr/2015BORD0053

12.
Robinson, Christine A.
On Siegel Maass Wave *Forms* of Weight 0.

Degree: 2013, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/9982

► Progress has been made toward a Saito-Kurokawa lift, including a non-holomorphic Shimura lift and a lift from the non-holomorphic analogue of the Kohnen plus space…
(more)

Subjects/Keywords: number theory; automorphic forms; Siegel modular forms

…attempts at a
*theory* of non-holomorphic Jacobi Maass *forms*, and establishes a correspondence… …HOLOMORPHIC *THEORY*
2.1
Siegel modular *forms*
What we now call Siegel modular *forms* were developed… …kinds of *automorphic* *forms* in several
complex variables. Various “lifting” theorems have been… …a similarly important role in the *theory* of Siegel modular *forms*. Let
G = GSp(2g, Q… …of the Langlands *automorphic* L-function, corresponding to the spinor *representation* of the…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Robinson, C. A. (2013). On Siegel Maass Wave Forms of Weight 0. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9982

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Thesis, University of Illinois – Chicago. Accessed March 07, 2021. http://hdl.handle.net/10027/9982.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Web. 07 Mar 2021.

Vancouver:

Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10027/9982.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/9982

Not specified: Masters Thesis or Doctoral Dissertation

University of Minnesota

13.
Sands, Adrienne.
* Automorphic* Hamiltonians, Epstein zeta functions, and Kronecker limit formulas.

Degree: PhD, Mathematics, 2020, University of Minnesota

URL: http://hdl.handle.net/11299/217155

We construct an automorphic Hamiltonian which has purely discrete spectrum on L^{2} ≤ ft(SL_{r}(\Z)\backslash SL_{r}(\R)/SO(r,\R))), identify its ground state, and show how it can characterize a nuclear Fr\'echet automorphic Schwartz space.

Subjects/Keywords: Automorphic forms; Automorphic Hamiltonian; Automorphic Schwartz space; Degenerate Eisenstein series; Epstein zeta functions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sands, A. (2020). Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/217155

Chicago Manual of Style (16^{th} Edition):

Sands, Adrienne. “Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas.” 2020. Doctoral Dissertation, University of Minnesota. Accessed March 07, 2021. http://hdl.handle.net/11299/217155.

MLA Handbook (7^{th} Edition):

Sands, Adrienne. “Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas.” 2020. Web. 07 Mar 2021.

Vancouver:

Sands A. Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas. [Internet] [Doctoral dissertation]. University of Minnesota; 2020. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11299/217155.

Council of Science Editors:

Sands A. Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas. [Doctoral Dissertation]. University of Minnesota; 2020. Available from: http://hdl.handle.net/11299/217155

14. Allen, Patrick. Modularity of nearly ordinary 2-adic residually dihedral Galois representations.

Degree: Mathematics, 2012, UCLA

URL: http://www.escholarship.org/uc/item/1nk3w1xd

► We prove modularity of some two dimensional 2-adic Galois representations over a totally real field that are nearly ordinary at all places above 2 and…
(more)

Subjects/Keywords: Mathematics; Automorphic forms; Galois representations; Number theory

…*automorphic* *forms*, are what is known as modularity lifting theorems. Given a Galois
*representation*… …between Galois representations and *automorphic* *forms*.
Galois representations arise quite… …deduce properties of the geometric object. *Automorphic*
*forms* are certain complex analytic… …modular *forms*. A priori, *automorphic* *forms* and
Galois representations don’t appear to have… …analysis.
The idea that arithmetic objects should have *automorphic* *forms* associated to them was…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Allen, P. (2012). Modularity of nearly ordinary 2-adic residually dihedral Galois representations. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/1nk3w1xd

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Allen, Patrick. “Modularity of nearly ordinary 2-adic residually dihedral Galois representations.” 2012. Thesis, UCLA. Accessed March 07, 2021. http://www.escholarship.org/uc/item/1nk3w1xd.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Allen, Patrick. “Modularity of nearly ordinary 2-adic residually dihedral Galois representations.” 2012. Web. 07 Mar 2021.

Vancouver:

Allen P. Modularity of nearly ordinary 2-adic residually dihedral Galois representations. [Internet] [Thesis]. UCLA; 2012. [cited 2021 Mar 07]. Available from: http://www.escholarship.org/uc/item/1nk3w1xd.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Allen P. Modularity of nearly ordinary 2-adic residually dihedral Galois representations. [Thesis]. UCLA; 2012. Available from: http://www.escholarship.org/uc/item/1nk3w1xd

Not specified: Masters Thesis or Doctoral Dissertation

University of Cambridge

15. Chen, Cangxiong. ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|.

Degree: PhD, 2015, University of Cambridge

► Kronecker’s first limit formula describes the constant term in the Laurent expansion of a non-holomorphic Eisenstein series at one of its poles. Asai generalised the…
(more)

Subjects/Keywords: Algebraic number theory; Automorphic forms; Asai's function; Eisenstein series; Kronecker Limit Formula; L-functions; Rankin-Selberg integral

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, C. (2015). ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/306109https://www.repository.cam.ac.uk/bitstream/1810/306109/2/license.txt

Chicago Manual of Style (16^{th} Edition):

Chen, Cangxiong. “ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|.” 2015. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://www.repository.cam.ac.uk/handle/1810/306109https://www.repository.cam.ac.uk/bitstream/1810/306109/2/license.txt.

MLA Handbook (7^{th} Edition):

Chen, Cangxiong. “ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|.” 2015. Web. 07 Mar 2021.

Vancouver:

Chen C. ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2021 Mar 07]. Available from: https://www.repository.cam.ac.uk/handle/1810/306109https://www.repository.cam.ac.uk/bitstream/1810/306109/2/license.txt.

Council of Science Editors:

Chen C. ON ASAI’S FUNCTION ANALOGOUS TO log |η(z)|. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/306109https://www.repository.cam.ac.uk/bitstream/1810/306109/2/license.txt

16.
Jung, Junehyuk.
On the zeros of *automorphic* * forms*
.

Degree: PhD, 2013, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp01fx719m52n

► The *subject* of this thesis is the zeros of *automorphic* *forms*. In the first part, we study the asymptotic behavior of nodal lines of Maass…
(more)

Subjects/Keywords: Automorphic forms; Number theory; Spectral geometry

…77
8.2
Dihedral *forms* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78… …B if A = B + o(B) as B → ∞.
1
Part I
Nodal lines of Maass cusp *forms*
2… …x28;T 5/6+ ) *forms* within the set of even
Maass-Hecke cusp *forms* in {φ | T < τφ… …are ∼ T /24 even Maass-Hecke cusp *forms*
in {φ | T < τφ < T + 1}.
The assumption of… …fixed geodesic segment β ⊂ δ, all but
O (T 1/3+ ) *forms* within the set of even Maass…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jung, J. (2013). On the zeros of automorphic forms . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01fx719m52n

Chicago Manual of Style (16^{th} Edition):

Jung, Junehyuk. “On the zeros of automorphic forms .” 2013. Doctoral Dissertation, Princeton University. Accessed March 07, 2021. http://arks.princeton.edu/ark:/88435/dsp01fx719m52n.

MLA Handbook (7^{th} Edition):

Jung, Junehyuk. “On the zeros of automorphic forms .” 2013. Web. 07 Mar 2021.

Vancouver:

Jung J. On the zeros of automorphic forms . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2021 Mar 07]. Available from: http://arks.princeton.edu/ark:/88435/dsp01fx719m52n.

Council of Science Editors:

Jung J. On the zeros of automorphic forms . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01fx719m52n

University of Cambridge

17. Chen, Cangxiong. On Asai's function analogous to log |η(z)|.

Degree: PhD, 2015, University of Cambridge

URL: https://doi.org/10.17863/CAM.53187 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989

► Kronecker’s first limit formula describes the constant term in the Laurent expansion of a non-holomorphic Eisenstein series at one of its poles. Asai generalised the…
(more)

Subjects/Keywords: Algebraic number theory; Automorphic forms; Asai's function; Eisenstein series; Kronecker Limit Formula; L-functions; Rankin-Selberg integral

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, C. (2015). On Asai's function analogous to log |η(z)|. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.53187 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989

Chicago Manual of Style (16^{th} Edition):

Chen, Cangxiong. “On Asai's function analogous to log |η(z)|.” 2015. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://doi.org/10.17863/CAM.53187 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989.

MLA Handbook (7^{th} Edition):

Chen, Cangxiong. “On Asai's function analogous to log |η(z)|.” 2015. Web. 07 Mar 2021.

Vancouver:

Chen C. On Asai's function analogous to log |η(z)|. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2021 Mar 07]. Available from: https://doi.org/10.17863/CAM.53187 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989.

Council of Science Editors:

Chen C. On Asai's function analogous to log |η(z)|. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://doi.org/10.17863/CAM.53187 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809989

Princeton University

18.
Su, Jun.
Coherent cohomology of Shimura varieties and *automorphic* * forms*
.

Degree: PhD, 2019, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp010p096979s

► In this thesis, we show that the cohomology of canonical extensions of *automorphic* vector bundles over toroidal compactifications of Shimura varieties can be computed by…
(more)

Subjects/Keywords: automorphic forms; automorphic vector bundles; Shimura varieties; toroidal compactifications

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Su, J. (2019). Coherent cohomology of Shimura varieties and automorphic forms . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp010p096979s

Chicago Manual of Style (16^{th} Edition):

Su, Jun. “Coherent cohomology of Shimura varieties and automorphic forms .” 2019. Doctoral Dissertation, Princeton University. Accessed March 07, 2021. http://arks.princeton.edu/ark:/88435/dsp010p096979s.

MLA Handbook (7^{th} Edition):

Su, Jun. “Coherent cohomology of Shimura varieties and automorphic forms .” 2019. Web. 07 Mar 2021.

Vancouver:

Su J. Coherent cohomology of Shimura varieties and automorphic forms . [Internet] [Doctoral dissertation]. Princeton University; 2019. [cited 2021 Mar 07]. Available from: http://arks.princeton.edu/ark:/88435/dsp010p096979s.

Council of Science Editors:

Su J. Coherent cohomology of Shimura varieties and automorphic forms . [Doctoral Dissertation]. Princeton University; 2019. Available from: http://arks.princeton.edu/ark:/88435/dsp010p096979s

University of Ottawa

19. Mousaaid, Youssef. Convers Theorems of Borcherds Products .

Degree: 2018, University of Ottawa

URL: http://hdl.handle.net/10393/38405

► In his paper, Borcherds introduced a theta lift which allowed him to lift classical modular *forms* with poles at cusps to *automorphic* *forms* on the…
(more)

Subjects/Keywords: Borcherds products; Heegner divisors; Automorphic forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mousaaid, Y. (2018). Convers Theorems of Borcherds Products . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/38405

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mousaaid, Youssef. “Convers Theorems of Borcherds Products .” 2018. Thesis, University of Ottawa. Accessed March 07, 2021. http://hdl.handle.net/10393/38405.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mousaaid, Youssef. “Convers Theorems of Borcherds Products .” 2018. Web. 07 Mar 2021.

Vancouver:

Mousaaid Y. Convers Theorems of Borcherds Products . [Internet] [Thesis]. University of Ottawa; 2018. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10393/38405.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mousaaid Y. Convers Theorems of Borcherds Products . [Thesis]. University of Ottawa; 2018. Available from: http://hdl.handle.net/10393/38405

Not specified: Masters Thesis or Doctoral Dissertation

University of Melbourne

20.
McAndrew, Angus William.
Galois representations and theta operators for Siegel modular * forms*.

Degree: 2015, University of Melbourne

URL: http://hdl.handle.net/11343/57014

► Modular *forms* are powerful number theoretic objects, having attracted much study and attention for the last 200 years. In the modern area, one of their…
(more)

Subjects/Keywords: number theory; representation theory; algebraic geometry; Galois representations; modular forms; Siegel modular forms; Serre's conjecture

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McAndrew, A. W. (2015). Galois representations and theta operators for Siegel modular forms. (Masters Thesis). University of Melbourne. Retrieved from http://hdl.handle.net/11343/57014

Chicago Manual of Style (16^{th} Edition):

McAndrew, Angus William. “Galois representations and theta operators for Siegel modular forms.” 2015. Masters Thesis, University of Melbourne. Accessed March 07, 2021. http://hdl.handle.net/11343/57014.

MLA Handbook (7^{th} Edition):

McAndrew, Angus William. “Galois representations and theta operators for Siegel modular forms.” 2015. Web. 07 Mar 2021.

Vancouver:

McAndrew AW. Galois representations and theta operators for Siegel modular forms. [Internet] [Masters thesis]. University of Melbourne; 2015. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11343/57014.

Council of Science Editors:

McAndrew AW. Galois representations and theta operators for Siegel modular forms. [Masters Thesis]. University of Melbourne; 2015. Available from: http://hdl.handle.net/11343/57014

21.
Alluhaibi, Nadia.
On vector-valued *automorphic* *forms* on bounded symmetric domains.

Degree: 2017, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/4498

► The objective of the study is to investigate the behaviour of the inner products of vector-valued Poincare series, for large weight, associated to submanifolds of…
(more)

Subjects/Keywords: automorphic forms; asymptotics; poincare series; bounded domains; modular forms; bergman kernel; hyperbolic space; Algebraic Geometry; Analysis; Geometry and Topology; Number Theory; Physical Sciences and Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Alluhaibi, N. (2017). On vector-valued automorphic forms on bounded symmetric domains. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/4498

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Alluhaibi, Nadia. “On vector-valued automorphic forms on bounded symmetric domains.” 2017. Thesis, University of Western Ontario. Accessed March 07, 2021. https://ir.lib.uwo.ca/etd/4498.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Alluhaibi, Nadia. “On vector-valued automorphic forms on bounded symmetric domains.” 2017. Web. 07 Mar 2021.

Vancouver:

Alluhaibi N. On vector-valued automorphic forms on bounded symmetric domains. [Internet] [Thesis]. University of Western Ontario; 2017. [cited 2021 Mar 07]. Available from: https://ir.lib.uwo.ca/etd/4498.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Alluhaibi N. On vector-valued automorphic forms on bounded symmetric domains. [Thesis]. University of Western Ontario; 2017. Available from: https://ir.lib.uwo.ca/etd/4498

Not specified: Masters Thesis or Doctoral Dissertation

University of Hong Kong

22.
Fung, King-cheong.
Modular *forms* of small
weight and their applications.

Degree: 2017, University of Hong Kong

URL: http://hdl.handle.net/10722/249204

► In number *theory*, as well as many areas in mathematics, modular *forms* (or in general, *automorphic* *forms*) are powerful tools which have many applications. In…
(more)

Subjects/Keywords: Automorphic forms; Forms, Modular

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fung, K. (2017). Modular forms of small weight and their applications. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/249204

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Fung, King-cheong. “Modular forms of small weight and their applications.” 2017. Thesis, University of Hong Kong. Accessed March 07, 2021. http://hdl.handle.net/10722/249204.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Fung, King-cheong. “Modular forms of small weight and their applications.” 2017. Web. 07 Mar 2021.

Vancouver:

Fung K. Modular forms of small weight and their applications. [Internet] [Thesis]. University of Hong Kong; 2017. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10722/249204.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fung K. Modular forms of small weight and their applications. [Thesis]. University of Hong Kong; 2017. Available from: http://hdl.handle.net/10722/249204

Not specified: Masters Thesis or Doctoral Dissertation

23.
Nguyen, Manh Tu.
Higher Hida *Theory* on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1).

Degree: Docteur es, Mathématiques, 2020, Lyon

URL: http://www.theses.fr/2020LYSEN009

►

Le travaux récent de Calegari et Geraghty ont enlevé les restrictions de la méthode originale de Taylor-Wiles, cela nous permet d’attaquer les conjectures de modularité… (more)

Subjects/Keywords: Variété de Shimura; Forme automorphe p-adique; Modularité; Overconvergent automorphic forms; Shimura variety; P-adic automorphic forms; Modularity; Overconvergent forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nguyen, M. T. (2020). Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1). (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2020LYSEN009

Chicago Manual of Style (16^{th} Edition):

Nguyen, Manh Tu. “Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1).” 2020. Doctoral Dissertation, Lyon. Accessed March 07, 2021. http://www.theses.fr/2020LYSEN009.

MLA Handbook (7^{th} Edition):

Nguyen, Manh Tu. “Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1).” 2020. Web. 07 Mar 2021.

Vancouver:

Nguyen MT. Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1). [Internet] [Doctoral dissertation]. Lyon; 2020. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2020LYSEN009.

Council of Science Editors:

Nguyen MT. Higher Hida Theory on Unitary Group GU (2,1) : Théorie de Hida supérieur pour le groupe unitaire GU (2,1). [Doctoral Dissertation]. Lyon; 2020. Available from: http://www.theses.fr/2020LYSEN009

University of Hong Kong

24.
徐晨.
On a mean value of twisted
*automorphic* L-functions.

Degree: 2008, University of Hong Kong

URL: http://hdl.handle.net/10722/51868

Subjects/Keywords: L-functions.; Automorphic forms.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

徐晨. (2008). On a mean value of twisted automorphic L-functions. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/51868

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

徐晨. “On a mean value of twisted automorphic L-functions.” 2008. Thesis, University of Hong Kong. Accessed March 07, 2021. http://hdl.handle.net/10722/51868.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

徐晨. “On a mean value of twisted automorphic L-functions.” 2008. Web. 07 Mar 2021.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Vancouver:

徐晨. On a mean value of twisted automorphic L-functions. [Internet] [Thesis]. University of Hong Kong; 2008. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10722/51868.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

徐晨. On a mean value of twisted automorphic L-functions. [Thesis]. University of Hong Kong; 2008. Available from: http://hdl.handle.net/10722/51868

Author name may be incomplete

Not specified: Masters Thesis or Doctoral Dissertation

Princeton University

25.
Varma, Ila.
On local-global compatibility for cuspidal regular algebraic *automorphic* representations of GLn
.

Degree: PhD, 2015, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp01g158bk68k

► We prove the compatibility of local and global Langlands correspondences for \GL_{n} up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne and Scholze. More…
(more)

Subjects/Keywords: Galois representations; Langlands program; p-adic automorphic forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Varma, I. (2015). On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01g158bk68k

Chicago Manual of Style (16^{th} Edition):

Varma, Ila. “On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn .” 2015. Doctoral Dissertation, Princeton University. Accessed March 07, 2021. http://arks.princeton.edu/ark:/88435/dsp01g158bk68k.

MLA Handbook (7^{th} Edition):

Varma, Ila. “On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn .” 2015. Web. 07 Mar 2021.

Vancouver:

Varma I. On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn . [Internet] [Doctoral dissertation]. Princeton University; 2015. [cited 2021 Mar 07]. Available from: http://arks.princeton.edu/ark:/88435/dsp01g158bk68k.

Council of Science Editors:

Varma I. On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn . [Doctoral Dissertation]. Princeton University; 2015. Available from: http://arks.princeton.edu/ark:/88435/dsp01g158bk68k

The Ohio State University

26. Brewster, Stephen Thomas. Automorphisms of the cohomology ring of finite Grassmann manifolds.

Degree: PhD, Graduate School, 1978, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354

Subjects/Keywords: Mathematics; Automorphic forms; Manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brewster, S. T. (1978). Automorphisms of the cohomology ring of finite Grassmann manifolds. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354

Chicago Manual of Style (16^{th} Edition):

Brewster, Stephen Thomas. “Automorphisms of the cohomology ring of finite Grassmann manifolds.” 1978. Doctoral Dissertation, The Ohio State University. Accessed March 07, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354.

MLA Handbook (7^{th} Edition):

Brewster, Stephen Thomas. “Automorphisms of the cohomology ring of finite Grassmann manifolds.” 1978. Web. 07 Mar 2021.

Vancouver:

Brewster ST. Automorphisms of the cohomology ring of finite Grassmann manifolds. [Internet] [Doctoral dissertation]. The Ohio State University; 1978. [cited 2021 Mar 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354.

Council of Science Editors:

Brewster ST. Automorphisms of the cohomology ring of finite Grassmann manifolds. [Doctoral Dissertation]. The Ohio State University; 1978. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487082492038354

27.
Savala, Paul.
Computing spectral data for Maass cusp *forms* using resonance.

Degree: PhD, Mathematics, 2016, University of Iowa

URL: https://ir.uiowa.edu/etd/3182

► The primary arithmetic information attached to a Maass cusp form is its Laplace eigenvalue. However, in the case of cuspidal Maass *forms*, the range…
(more)

Subjects/Keywords: publicabstract; automorphic forms; laplace eigenvalue; maass forms; number theory; resonance; Mathematics

…Maass *forms* show up in the larger *theory*. A Maass form
can be lifted to an *automorphic*… …1
2
2
5
6
2 COMPUTATION OF *AUTOMORPHIC* *FORMS* . . . . . . . . . . . .
11
1.4
2.1
2.2… …2.3
2.4
2.5
*Automorphic* *Forms* and the Riemann Zeta Function
Modular *Forms*… …55
viii
1
CHAPTER 1
INTRODUCTION AND BACKGROUND
1.1
*Automorphic* *Forms* and the Riemann… …the same key properties. These functions are known as
“*automorphic* *forms*.”
2
1.2
Modular…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Savala, P. (2016). Computing spectral data for Maass cusp forms using resonance. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/3182

Chicago Manual of Style (16^{th} Edition):

Savala, Paul. “Computing spectral data for Maass cusp forms using resonance.” 2016. Doctoral Dissertation, University of Iowa. Accessed March 07, 2021. https://ir.uiowa.edu/etd/3182.

MLA Handbook (7^{th} Edition):

Savala, Paul. “Computing spectral data for Maass cusp forms using resonance.” 2016. Web. 07 Mar 2021.

Vancouver:

Savala P. Computing spectral data for Maass cusp forms using resonance. [Internet] [Doctoral dissertation]. University of Iowa; 2016. [cited 2021 Mar 07]. Available from: https://ir.uiowa.edu/etd/3182.

Council of Science Editors:

Savala P. Computing spectral data for Maass cusp forms using resonance. [Doctoral Dissertation]. University of Iowa; 2016. Available from: https://ir.uiowa.edu/etd/3182

University of Michigan

28.
Klosin, Krzysztof.
Congruences among *automorphic* *forms* on the unitary group U(2,2).

Degree: PhD, Pure Sciences, 2006, University of Michigan

URL: http://hdl.handle.net/2027.42/126079

► Let k be a positive integer divisible by 4, ℓ > k an odd prime, and f a normalized elliptic cuspidal eigenform of weight k…
(more)

Subjects/Keywords: Automorphic Forms; Bloch-kato Conjecture; Congruences; Galois Representation; Galois Representations; L-functions; Selmer Group; Unitary Group U(2,2)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Klosin, K. (2006). Congruences among automorphic forms on the unitary group U(2,2). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126079

Chicago Manual of Style (16^{th} Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Doctoral Dissertation, University of Michigan. Accessed March 07, 2021. http://hdl.handle.net/2027.42/126079.

MLA Handbook (7^{th} Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Web. 07 Mar 2021.

Vancouver:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Internet] [Doctoral dissertation]. University of Michigan; 2006. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2027.42/126079.

Council of Science Editors:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Doctoral Dissertation]. University of Michigan; 2006. Available from: http://hdl.handle.net/2027.42/126079

29.
Conti, Andrea.
Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope *automorphic* * forms*.

Degree: Docteur es, Mathématiques, 2016, Sorbonne Paris Cité

URL: http://www.theses.fr/2016USPCD081

►

Soit g = 1 ou 2 et p > 3 un nombre premier. Pour le groupe symplectique GSp2g, les systèmes de valeurs propres de Hecke… (more)

Subjects/Keywords: Image de Galois; Familles p-adiques; Formes automorphes; Galois representations; Automorphic forms; P-Adic families

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Conti, A. (2016). Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2016USPCD081

Chicago Manual of Style (16^{th} Edition):

Conti, Andrea. “Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms.” 2016. Doctoral Dissertation, Sorbonne Paris Cité. Accessed March 07, 2021. http://www.theses.fr/2016USPCD081.

MLA Handbook (7^{th} Edition):

Conti, Andrea. “Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms.” 2016. Web. 07 Mar 2021.

Vancouver:

Conti A. Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2016. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2016USPCD081.

Council of Science Editors:

Conti A. Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms. [Doctoral Dissertation]. Sorbonne Paris Cité; 2016. Available from: http://www.theses.fr/2016USPCD081

ETH Zürich

30. Jana, Subhajit. Analytic Newvectors for GL(n,R) and Applications.

Degree: 2020, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/418883

► We introduce an analytic archimedean analogue of some aspects of the classical non-archimedean newvector *theory* formulated by Casselman and Jacquet – Piatetski-Shapiro – Shalika. We relate the…
(more)

Subjects/Keywords: Newvector; L-function; Automorphic forms; Whittaker functions; info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jana, S. (2020). Analytic Newvectors for GL(n,R) and Applications. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/418883

Chicago Manual of Style (16^{th} Edition):

Jana, Subhajit. “Analytic Newvectors for GL(n,R) and Applications.” 2020. Doctoral Dissertation, ETH Zürich. Accessed March 07, 2021. http://hdl.handle.net/20.500.11850/418883.

MLA Handbook (7^{th} Edition):

Jana, Subhajit. “Analytic Newvectors for GL(n,R) and Applications.” 2020. Web. 07 Mar 2021.

Vancouver:

Jana S. Analytic Newvectors for GL(n,R) and Applications. [Internet] [Doctoral dissertation]. ETH Zürich; 2020. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/20.500.11850/418883.

Council of Science Editors:

Jana S. Analytic Newvectors for GL(n,R) and Applications. [Doctoral Dissertation]. ETH Zürich; 2020. Available from: http://hdl.handle.net/20.500.11850/418883