Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Arithmetic geometric mean)`

.
Showing records 1 – 8 of
8 total matches.

▼ Search Limiters

Utah State University

1. Shafiei, Mahdi. Temporal Bisection Dynamics.

Degree: MS, Psychology, 2020, Utah State University

URL: https://digitalcommons.usu.edu/etd/7828

► Temporal bisection is a behavioral task used to study how we perceive time. However, it is not fully clear how time perception should be…
(more)

Subjects/Keywords: bayesian learning; temporal bisection; geometric mean; arithmetic mean; harmonic mean; time perception; Psychology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shafiei, M. (2020). Temporal Bisection Dynamics. (Masters Thesis). Utah State University. Retrieved from https://digitalcommons.usu.edu/etd/7828

Chicago Manual of Style (16^{th} Edition):

Shafiei, Mahdi. “Temporal Bisection Dynamics.” 2020. Masters Thesis, Utah State University. Accessed November 29, 2020. https://digitalcommons.usu.edu/etd/7828.

MLA Handbook (7^{th} Edition):

Shafiei, Mahdi. “Temporal Bisection Dynamics.” 2020. Web. 29 Nov 2020.

Vancouver:

Shafiei M. Temporal Bisection Dynamics. [Internet] [Masters thesis]. Utah State University; 2020. [cited 2020 Nov 29]. Available from: https://digitalcommons.usu.edu/etd/7828.

Council of Science Editors:

Shafiei M. Temporal Bisection Dynamics. [Masters Thesis]. Utah State University; 2020. Available from: https://digitalcommons.usu.edu/etd/7828

2. Μησιακούλης, Σπυρίδων. Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της.

Degree: 2012, Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ)

URL: http://hdl.handle.net/10442/hedi/26874

►

The present thesis is aiming to address both the theoretical and the practical problems associated with the use of statistical means in the calculation of… (more)

Subjects/Keywords: Αξιολόγηση χαρτοφυλακίου; Απόδοση επενδύσεων; Αριθμητικός μέσος; Γεωμετρικός μέσος; Αρμονικός μέσος; Αμερόληπτες προβλέψεις αποδόσεων; Διαχείριση χαρτοφυλακίου; Portofolio evaluation; Investment returns; Arithmetic mean; Geometric mean; Harmonic mean; Unbiased return estimation; Portofolio management

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Μησιακούλης, . . (2012). Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της. (Thesis). Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ). Retrieved from http://hdl.handle.net/10442/hedi/26874

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Μησιακούλης, Σπυρίδων. “Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της.” 2012. Thesis, Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ). Accessed November 29, 2020. http://hdl.handle.net/10442/hedi/26874.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Μησιακούλης, Σπυρίδων. “Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της.” 2012. Web. 29 Nov 2020.

Vancouver:

Μησιακούλης . Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της. [Internet] [Thesis]. Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ); 2012. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10442/hedi/26874.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Μησιακούλης . Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της. [Thesis]. Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ); 2012. Available from: http://hdl.handle.net/10442/hedi/26874

Not specified: Masters Thesis or Doctoral Dissertation

3.
Fasi, Massimiliano.
Computing matrix functions in arbitrary precision
* arithmetic*.

Degree: 2019, University of Manchester

URL: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:319947

► Functions of matrices arise in numerous applications, and their accurate and efficient evaluation is an important topic in numerical linear algebra. In this thesis, we…
(more)

Subjects/Keywords: Matrix functions; Multiprecision arithmetic; Matrix polynomial; Rational matrix functions; Matrix exponential; Matrix logarithm; Matrix weighted geometric mean

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fasi, M. (2019). Computing matrix functions in arbitrary precision arithmetic. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:319947

Chicago Manual of Style (16^{th} Edition):

Fasi, Massimiliano. “Computing matrix functions in arbitrary precision arithmetic.” 2019. Doctoral Dissertation, University of Manchester. Accessed November 29, 2020. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:319947.

MLA Handbook (7^{th} Edition):

Fasi, Massimiliano. “Computing matrix functions in arbitrary precision arithmetic.” 2019. Web. 29 Nov 2020.

Vancouver:

Fasi M. Computing matrix functions in arbitrary precision arithmetic. [Internet] [Doctoral dissertation]. University of Manchester; 2019. [cited 2020 Nov 29]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:319947.

Council of Science Editors:

Fasi M. Computing matrix functions in arbitrary precision arithmetic. [Doctoral Dissertation]. University of Manchester; 2019. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:319947

University of Manchester

4.
Fasi, Massimiliano.
Computing matrix functions in arbitrary precision * arithmetic*.

Degree: PhD, 2019, University of Manchester

URL: https://www.research.manchester.ac.uk/portal/en/theses/computing-matrix-functions-in-arbitrary-precision-arithmetic(ec943e16-283b-4f18-9cab-c4224533c375).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779696

► Functions of matrices arise in numerous applications, and their accurate and efficient evaluation is an important topic in numerical linear algebra. In this thesis, we…
(more)

Subjects/Keywords: 510; Matrix functions; Multiprecision arithmetic; Matrix polynomial; Rational matrix functions; Matrix exponential; Matrix logarithm; Matrix weighted geometric mean

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fasi, M. (2019). Computing matrix functions in arbitrary precision arithmetic. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/computing-matrix-functions-in-arbitrary-precision-arithmetic(ec943e16-283b-4f18-9cab-c4224533c375).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779696

Chicago Manual of Style (16^{th} Edition):

Fasi, Massimiliano. “Computing matrix functions in arbitrary precision arithmetic.” 2019. Doctoral Dissertation, University of Manchester. Accessed November 29, 2020. https://www.research.manchester.ac.uk/portal/en/theses/computing-matrix-functions-in-arbitrary-precision-arithmetic(ec943e16-283b-4f18-9cab-c4224533c375).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779696.

MLA Handbook (7^{th} Edition):

Fasi, Massimiliano. “Computing matrix functions in arbitrary precision arithmetic.” 2019. Web. 29 Nov 2020.

Vancouver:

Fasi M. Computing matrix functions in arbitrary precision arithmetic. [Internet] [Doctoral dissertation]. University of Manchester; 2019. [cited 2020 Nov 29]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/computing-matrix-functions-in-arbitrary-precision-arithmetic(ec943e16-283b-4f18-9cab-c4224533c375).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779696.

Council of Science Editors:

Fasi M. Computing matrix functions in arbitrary precision arithmetic. [Doctoral Dissertation]. University of Manchester; 2019. Available from: https://www.research.manchester.ac.uk/portal/en/theses/computing-matrix-functions-in-arbitrary-precision-arithmetic(ec943e16-283b-4f18-9cab-c4224533c375).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779696

University of Illinois – Urbana-Champaign

5.
Albar, Wafaa Abdullah.
Non commutative version of *arithmetic* *geometric* *mean* inequality and crossed product of ternary ring of operators.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/98206

► This thesis is structured into two parts. In the first two chapters, we prove the non commutative version of the *Arithmetic* *Geometric* *Mean* (AGM) inequality…
(more)

Subjects/Keywords: Arithmetic geometric mean inequality (AGM); Random matrices; Ternary ring of operators (TRO); Crossed product of ternary ring of operators (TROs)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Albar, W. A. (2017). Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/98206

Chicago Manual of Style (16^{th} Edition):

Albar, Wafaa Abdullah. “Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed November 29, 2020. http://hdl.handle.net/2142/98206.

MLA Handbook (7^{th} Edition):

Albar, Wafaa Abdullah. “Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators.” 2017. Web. 29 Nov 2020.

Vancouver:

Albar WA. Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2142/98206.

Council of Science Editors:

Albar WA. Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/98206

Louisiana State University

6. Feng, Xiaoyu. Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting.

Degree: PhD, Electrical and Computer Engineering, 2011, Louisiana State University

URL: etd-11092011-125736 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1274

► Linear identification technique is to linearly embed a piece of unique information into digital media data for the purpose of satisfying specific demands such as…
(more)

Subjects/Keywords: system performance; extended arithmetic-geometric mean inequality; digital watermarking; signal-to-interference-plus-noise ratio; linear identification technique; transmitter identification

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Feng, X. (2011). Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-11092011-125736 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1274

Chicago Manual of Style (16^{th} Edition):

Feng, Xiaoyu. “Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting.” 2011. Doctoral Dissertation, Louisiana State University. Accessed November 29, 2020. etd-11092011-125736 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1274.

MLA Handbook (7^{th} Edition):

Feng, Xiaoyu. “Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting.” 2011. Web. 29 Nov 2020.

Vancouver:

Feng X. Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting. [Internet] [Doctoral dissertation]. Louisiana State University; 2011. [cited 2020 Nov 29]. Available from: etd-11092011-125736 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1274.

Council of Science Editors:

Feng X. Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting. [Doctoral Dissertation]. Louisiana State University; 2011. Available from: etd-11092011-125736 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1274

Brno University of Technology

7. Chaloupka, Jan. Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions.

Degree: 2019, Brno University of Technology

URL: http://hdl.handle.net/11012/53443

► Nowadays high-precision computations are still more desired. Either for simulation on a level of atoms where every digit is important and inaccurary in computation can…
(more)

Subjects/Keywords: AGM; aritmeticko-geometrický průměr; elementární funkce; vysoce přesné výpočty; víceslovní aritmetika; efektivní metody; aproximace funkcí; Taylorův polynom; redukce argumentů; AGM; arithmetic-geometric mean; elementary functions; high-precision computations; multi-precision arithmetic; efficient methods; function approximation; Taylor's polynom; argument reduction

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chaloupka, J. (2019). Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/53443

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chaloupka, Jan. “Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions.” 2019. Thesis, Brno University of Technology. Accessed November 29, 2020. http://hdl.handle.net/11012/53443.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chaloupka, Jan. “Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions.” 2019. Web. 29 Nov 2020.

Vancouver:

Chaloupka J. Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/11012/53443.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chaloupka J. Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/53443

Not specified: Masters Thesis or Doctoral Dissertation

Texas Tech University

8. Mckale, Kaleb D. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.

Degree: Mathematics and Statistics, 2011, Texas Tech University

URL: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

► In this paper, we extend the work of Debusschere et al. (2004) by introducing a new approach to evaluating transcendental functions of generalized polynomial chaos…
(more)

Subjects/Keywords: Arithmetic-geometric mean; Polynomial chaos; Transcendental functions; Borchardt, C.W.; Debusschere, B.J.; Ghanem, R.G.; Uncertainty; Quantification; Brent, R.P; Fast algorithms; Spectral methods; Hypergeometric; Orthogonal polynomials; Carlson, B.C.; Non-intrusive spectral projection (NISP); Arithmetic-geometric mean (AGM); Polynomial chaos expansions (PCEs); Uncertainty quantification (UQ); Gauss; Quadratic convergence; Jacobi polynomials; Wiener, N.; Spanos, P.D.; Xiu, D.; Homogeneous chaos; Cameron, R.H.; Martin, W.T.; Fourier-hermite; Karniadakis, G.E.; Askey, R.; Probability; Distributions; Density function

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mckale, K. D. (2011). Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Thesis, Texas Tech University. Accessed November 29, 2020. http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Web. 29 Nov 2020.

Vancouver:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Internet] [Thesis]. Texas Tech University; 2011. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Thesis]. Texas Tech University; 2011. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Not specified: Masters Thesis or Doctoral Dissertation