Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Arithmetic geometric mean). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Utah State University

1. Shafiei, Mahdi. Temporal Bisection Dynamics.

Degree: MS, Psychology, 2020, Utah State University

  Temporal bisection is a behavioral task used to study how we perceive time. However, it is not fully clear how time perception should be… (more)

Subjects/Keywords: bayesian learning; temporal bisection; geometric mean; arithmetic mean; harmonic mean; time perception; Psychology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shafiei, M. (2020). Temporal Bisection Dynamics. (Masters Thesis). Utah State University. Retrieved from https://digitalcommons.usu.edu/etd/7828

Chicago Manual of Style (16th Edition):

Shafiei, Mahdi. “Temporal Bisection Dynamics.” 2020. Masters Thesis, Utah State University. Accessed November 29, 2020. https://digitalcommons.usu.edu/etd/7828.

MLA Handbook (7th Edition):

Shafiei, Mahdi. “Temporal Bisection Dynamics.” 2020. Web. 29 Nov 2020.

Vancouver:

Shafiei M. Temporal Bisection Dynamics. [Internet] [Masters thesis]. Utah State University; 2020. [cited 2020 Nov 29]. Available from: https://digitalcommons.usu.edu/etd/7828.

Council of Science Editors:

Shafiei M. Temporal Bisection Dynamics. [Masters Thesis]. Utah State University; 2020. Available from: https://digitalcommons.usu.edu/etd/7828

2. Μησιακούλης, Σπυρίδων. Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της.

Degree: 2012, Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ)

The present thesis is aiming to address both the theoretical and the practical problems associated with the use of statistical means in the calculation of… (more)

Subjects/Keywords: Αξιολόγηση χαρτοφυλακίου; Απόδοση επενδύσεων; Αριθμητικός μέσος; Γεωμετρικός μέσος; Αρμονικός μέσος; Αμερόληπτες προβλέψεις αποδόσεων; Διαχείριση χαρτοφυλακίου; Portofolio evaluation; Investment returns; Arithmetic mean; Geometric mean; Harmonic mean; Unbiased return estimation; Portofolio management

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Μησιακούλης, . . (2012). Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της. (Thesis). Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ). Retrieved from http://hdl.handle.net/10442/hedi/26874

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Μησιακούλης, Σπυρίδων. “Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της.” 2012. Thesis, Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ). Accessed November 29, 2020. http://hdl.handle.net/10442/hedi/26874.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Μησιακούλης, Σπυρίδων. “Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της.” 2012. Web. 29 Nov 2020.

Vancouver:

Μησιακούλης . Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της. [Internet] [Thesis]. Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ); 2012. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10442/hedi/26874.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Μησιακούλης . Απόδοση χαρτοφυλακίου: αναζήτηση του σωστού μέσου για τον υπολογισμό της. [Thesis]. Hellenic Open University; Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ); 2012. Available from: http://hdl.handle.net/10442/hedi/26874

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Fasi, Massimiliano. Computing matrix functions in arbitrary precision arithmetic.

Degree: 2019, University of Manchester

 Functions of matrices arise in numerous applications, and their accurate and efficient evaluation is an important topic in numerical linear algebra. In this thesis, we… (more)

Subjects/Keywords: Matrix functions; Multiprecision arithmetic; Matrix polynomial; Rational matrix functions; Matrix exponential; Matrix logarithm; Matrix weighted geometric mean

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fasi, M. (2019). Computing matrix functions in arbitrary precision arithmetic. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:319947

Chicago Manual of Style (16th Edition):

Fasi, Massimiliano. “Computing matrix functions in arbitrary precision arithmetic.” 2019. Doctoral Dissertation, University of Manchester. Accessed November 29, 2020. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:319947.

MLA Handbook (7th Edition):

Fasi, Massimiliano. “Computing matrix functions in arbitrary precision arithmetic.” 2019. Web. 29 Nov 2020.

Vancouver:

Fasi M. Computing matrix functions in arbitrary precision arithmetic. [Internet] [Doctoral dissertation]. University of Manchester; 2019. [cited 2020 Nov 29]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:319947.

Council of Science Editors:

Fasi M. Computing matrix functions in arbitrary precision arithmetic. [Doctoral Dissertation]. University of Manchester; 2019. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:319947


University of Manchester

4. Fasi, Massimiliano. Computing matrix functions in arbitrary precision arithmetic.

Degree: PhD, 2019, University of Manchester

 Functions of matrices arise in numerous applications, and their accurate and efficient evaluation is an important topic in numerical linear algebra. In this thesis, we… (more)

Subjects/Keywords: 510; Matrix functions; Multiprecision arithmetic; Matrix polynomial; Rational matrix functions; Matrix exponential; Matrix logarithm; Matrix weighted geometric mean

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fasi, M. (2019). Computing matrix functions in arbitrary precision arithmetic. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/computing-matrix-functions-in-arbitrary-precision-arithmetic(ec943e16-283b-4f18-9cab-c4224533c375).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779696

Chicago Manual of Style (16th Edition):

Fasi, Massimiliano. “Computing matrix functions in arbitrary precision arithmetic.” 2019. Doctoral Dissertation, University of Manchester. Accessed November 29, 2020. https://www.research.manchester.ac.uk/portal/en/theses/computing-matrix-functions-in-arbitrary-precision-arithmetic(ec943e16-283b-4f18-9cab-c4224533c375).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779696.

MLA Handbook (7th Edition):

Fasi, Massimiliano. “Computing matrix functions in arbitrary precision arithmetic.” 2019. Web. 29 Nov 2020.

Vancouver:

Fasi M. Computing matrix functions in arbitrary precision arithmetic. [Internet] [Doctoral dissertation]. University of Manchester; 2019. [cited 2020 Nov 29]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/computing-matrix-functions-in-arbitrary-precision-arithmetic(ec943e16-283b-4f18-9cab-c4224533c375).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779696.

Council of Science Editors:

Fasi M. Computing matrix functions in arbitrary precision arithmetic. [Doctoral Dissertation]. University of Manchester; 2019. Available from: https://www.research.manchester.ac.uk/portal/en/theses/computing-matrix-functions-in-arbitrary-precision-arithmetic(ec943e16-283b-4f18-9cab-c4224533c375).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779696


University of Illinois – Urbana-Champaign

5. Albar, Wafaa Abdullah. Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 This thesis is structured into two parts. In the first two chapters, we prove the non commutative version of the Arithmetic Geometric Mean (AGM) inequality… (more)

Subjects/Keywords: Arithmetic geometric mean inequality (AGM); Random matrices; Ternary ring of operators (TRO); Crossed product of ternary ring of operators (TROs)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Albar, W. A. (2017). Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/98206

Chicago Manual of Style (16th Edition):

Albar, Wafaa Abdullah. “Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed November 29, 2020. http://hdl.handle.net/2142/98206.

MLA Handbook (7th Edition):

Albar, Wafaa Abdullah. “Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators.” 2017. Web. 29 Nov 2020.

Vancouver:

Albar WA. Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2142/98206.

Council of Science Editors:

Albar WA. Non commutative version of arithmetic geometric mean inequality and crossed product of ternary ring of operators. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/98206


Louisiana State University

6. Feng, Xiaoyu. Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting.

Degree: PhD, Electrical and Computer Engineering, 2011, Louisiana State University

 Linear identification technique is to linearly embed a piece of unique information into digital media data for the purpose of satisfying specific demands such as… (more)

Subjects/Keywords: system performance; extended arithmetic-geometric mean inequality; digital watermarking; signal-to-interference-plus-noise ratio; linear identification technique; transmitter identification

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Feng, X. (2011). Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-11092011-125736 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1274

Chicago Manual of Style (16th Edition):

Feng, Xiaoyu. “Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting.” 2011. Doctoral Dissertation, Louisiana State University. Accessed November 29, 2020. etd-11092011-125736 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1274.

MLA Handbook (7th Edition):

Feng, Xiaoyu. “Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting.” 2011. Web. 29 Nov 2020.

Vancouver:

Feng X. Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting. [Internet] [Doctoral dissertation]. Louisiana State University; 2011. [cited 2020 Nov 29]. Available from: etd-11092011-125736 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1274.

Council of Science Editors:

Feng X. Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting. [Doctoral Dissertation]. Louisiana State University; 2011. Available from: etd-11092011-125736 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1274


Brno University of Technology

7. Chaloupka, Jan. Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions.

Degree: 2019, Brno University of Technology

 Nowadays high-precision computations are still more desired. Either for simulation on a level of atoms where every digit is important and inaccurary in computation can… (more)

Subjects/Keywords: AGM; aritmeticko-geometrický průměr; elementární funkce; vysoce přesné výpočty; víceslovní aritmetika; efektivní metody; aproximace funkcí; Taylorův polynom; redukce argumentů; AGM; arithmetic-geometric mean; elementary functions; high-precision computations; multi-precision arithmetic; efficient methods; function approximation; Taylor's polynom; argument reduction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chaloupka, J. (2019). Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/53443

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chaloupka, Jan. “Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions.” 2019. Thesis, Brno University of Technology. Accessed November 29, 2020. http://hdl.handle.net/11012/53443.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chaloupka, Jan. “Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions.” 2019. Web. 29 Nov 2020.

Vancouver:

Chaloupka J. Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/11012/53443.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chaloupka J. Efektivní algoritmy pro vysoce přesný výpočet elementárních funkcí: Effective Algorithms for High-Precision Computation of Elementary Functions. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/53443

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas Tech University

8. Mckale, Kaleb D. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.

Degree: Mathematics and Statistics, 2011, Texas Tech University

 In this paper, we extend the work of Debusschere et al. (2004) by introducing a new approach to evaluating transcendental functions of generalized polynomial chaos… (more)

Subjects/Keywords: Arithmetic-geometric mean; Polynomial chaos; Transcendental functions; Borchardt, C.W.; Debusschere, B.J.; Ghanem, R.G.; Uncertainty; Quantification; Brent, R.P; Fast algorithms; Spectral methods; Hypergeometric; Orthogonal polynomials; Carlson, B.C.; Non-intrusive spectral projection (NISP); Arithmetic-geometric mean (AGM); Polynomial chaos expansions (PCEs); Uncertainty quantification (UQ); Gauss; Quadratic convergence; Jacobi polynomials; Wiener, N.; Spanos, P.D.; Xiu, D.; Homogeneous chaos; Cameron, R.H.; Martin, W.T.; Fourier-hermite; Karniadakis, G.E.; Askey, R.; Probability; Distributions; Density function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mckale, K. D. (2011). Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Thesis, Texas Tech University. Accessed November 29, 2020. http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Web. 29 Nov 2020.

Vancouver:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Internet] [Thesis]. Texas Tech University; 2011. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Thesis]. Texas Tech University; 2011. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.