Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Arithmetic algebraic geometry). Showing records 1 – 17 of 17 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Exeter

1. Tyler, Michael Peter. On the birational section conjecture over function fields.

Degree: PhD, 2017, University of Exeter

 The birational variant of Grothendieck's section conjecture proposes a characterisation of the rational points of a curve over a finitely generated field over Q in… (more)

Subjects/Keywords: 510; birational section conjecture; section conjecture; algebraic geometry; arithmetic geometry; diophantine geometry; number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tyler, M. P. (2017). On the birational section conjecture over function fields. (Doctoral Dissertation). University of Exeter. Retrieved from http://hdl.handle.net/10871/31600

Chicago Manual of Style (16th Edition):

Tyler, Michael Peter. “On the birational section conjecture over function fields.” 2017. Doctoral Dissertation, University of Exeter. Accessed July 10, 2020. http://hdl.handle.net/10871/31600.

MLA Handbook (7th Edition):

Tyler, Michael Peter. “On the birational section conjecture over function fields.” 2017. Web. 10 Jul 2020.

Vancouver:

Tyler MP. On the birational section conjecture over function fields. [Internet] [Doctoral dissertation]. University of Exeter; 2017. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10871/31600.

Council of Science Editors:

Tyler MP. On the birational section conjecture over function fields. [Doctoral Dissertation]. University of Exeter; 2017. Available from: http://hdl.handle.net/10871/31600


University of Michigan

2. Shnidman, Ariel. Heights of Generalized Heegner Cycles.

Degree: PhD, Mathematics, 2015, University of Michigan

 We relate the derivative of a p-adic Rankin-Selberg L-function to p-adic heights of the generalized Heegner cycles introduced by Bertolini, Darmon, and Prasanna. This generalizes… (more)

Subjects/Keywords: algebraic cycles; L-functions; arithmetic geometry; number theory; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shnidman, A. (2015). Heights of Generalized Heegner Cycles. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/113442

Chicago Manual of Style (16th Edition):

Shnidman, Ariel. “Heights of Generalized Heegner Cycles.” 2015. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/113442.

MLA Handbook (7th Edition):

Shnidman, Ariel. “Heights of Generalized Heegner Cycles.” 2015. Web. 10 Jul 2020.

Vancouver:

Shnidman A. Heights of Generalized Heegner Cycles. [Internet] [Doctoral dissertation]. University of Michigan; 2015. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/113442.

Council of Science Editors:

Shnidman A. Heights of Generalized Heegner Cycles. [Doctoral Dissertation]. University of Michigan; 2015. Available from: http://hdl.handle.net/2027.42/113442


University of Oxford

3. Haydon, James Henri. Étale homotopy sections of algebraic varieties.

Degree: PhD, 2014, University of Oxford

 We define and study the fundamental pro-finite 2-groupoid of varieties X defined over a field k. This is a higher algebraic invariant of a scheme… (more)

Subjects/Keywords: 514; Algebraic geometry; Algebraic topology; Group theory and generalizations (mathematics); Number theory; higher-category theory; homotopy theory; arithmetic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haydon, J. H. (2014). Étale homotopy sections of algebraic varieties. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618471

Chicago Manual of Style (16th Edition):

Haydon, James Henri. “Étale homotopy sections of algebraic varieties.” 2014. Doctoral Dissertation, University of Oxford. Accessed July 10, 2020. http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618471.

MLA Handbook (7th Edition):

Haydon, James Henri. “Étale homotopy sections of algebraic varieties.” 2014. Web. 10 Jul 2020.

Vancouver:

Haydon JH. Étale homotopy sections of algebraic varieties. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2020 Jul 10]. Available from: http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618471.

Council of Science Editors:

Haydon JH. Étale homotopy sections of algebraic varieties. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618471

4. Savel, Charles. Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd.

Degree: Docteur es, Mathématiques et applications, 2015, Rennes 1

A une représentation de p-torsion du groupe de Galois absolu d'un corps p-adique, M. Kisin associe un espace de modules, appelé par la suite variété… (more)

Subjects/Keywords: Géométrie algébrique arithmétique; Représentations galoisiennes; Variétés de Kisin; Arithmetic algebraic geometry; Kisin varieties; Galois representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Savel, C. (2015). Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2015REN1S072

Chicago Manual of Style (16th Edition):

Savel, Charles. “Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd.” 2015. Doctoral Dissertation, Rennes 1. Accessed July 10, 2020. http://www.theses.fr/2015REN1S072.

MLA Handbook (7th Edition):

Savel, Charles. “Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd.” 2015. Web. 10 Jul 2020.

Vancouver:

Savel C. Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd. [Internet] [Doctoral dissertation]. Rennes 1; 2015. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2015REN1S072.

Council of Science Editors:

Savel C. Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd. [Doctoral Dissertation]. Rennes 1; 2015. Available from: http://www.theses.fr/2015REN1S072


Florida Atlantic University

5. Villanueva, Yuri. Rings of integer-valued polynomials and derivatives.

Degree: PhD, 2012, Florida Atlantic University

Summary: For D an integral domain with field of fractions K and E a subset of K, the ring Int (E,D) = {f e K[X]lf… (more)

Subjects/Keywords: Rings of integers; Ideals (Algebra); Polynomials; Arithmetic algebraic geometry; Categories (Mathematics); Commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Villanueva, Y. (2012). Rings of integer-valued polynomials and derivatives. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/FAU/3356899

Chicago Manual of Style (16th Edition):

Villanueva, Yuri. “Rings of integer-valued polynomials and derivatives.” 2012. Doctoral Dissertation, Florida Atlantic University. Accessed July 10, 2020. http://purl.flvc.org/FAU/3356899.

MLA Handbook (7th Edition):

Villanueva, Yuri. “Rings of integer-valued polynomials and derivatives.” 2012. Web. 10 Jul 2020.

Vancouver:

Villanueva Y. Rings of integer-valued polynomials and derivatives. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2012. [cited 2020 Jul 10]. Available from: http://purl.flvc.org/FAU/3356899.

Council of Science Editors:

Villanueva Y. Rings of integer-valued polynomials and derivatives. [Doctoral Dissertation]. Florida Atlantic University; 2012. Available from: http://purl.flvc.org/FAU/3356899

6. Tavenas, Sébastien. Bornes inférieures et supérieures dans les circuits arithmétiques : Upper and lower bounds for arithmetic circuits.

Degree: Docteur es, Informatique, 2014, Lyon, École normale supérieure

La complexité arithmétique est l’étude des ressources nécessaires pour calcu- ler des polynômes en n’utilisant que des opérations arithmétiques. À la fin des années 70,… (more)

Subjects/Keywords: Complexité arithmétique; Circuits arithmétiques; Tau-conjecture; Géométrie algébrique réelle; Arithmetic complexity; Arithmetic circuits; Tau-conjecture; Real algebraic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tavenas, S. (2014). Bornes inférieures et supérieures dans les circuits arithmétiques : Upper and lower bounds for arithmetic circuits. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2014ENSL0921

Chicago Manual of Style (16th Edition):

Tavenas, Sébastien. “Bornes inférieures et supérieures dans les circuits arithmétiques : Upper and lower bounds for arithmetic circuits.” 2014. Doctoral Dissertation, Lyon, École normale supérieure. Accessed July 10, 2020. http://www.theses.fr/2014ENSL0921.

MLA Handbook (7th Edition):

Tavenas, Sébastien. “Bornes inférieures et supérieures dans les circuits arithmétiques : Upper and lower bounds for arithmetic circuits.” 2014. Web. 10 Jul 2020.

Vancouver:

Tavenas S. Bornes inférieures et supérieures dans les circuits arithmétiques : Upper and lower bounds for arithmetic circuits. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2014. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2014ENSL0921.

Council of Science Editors:

Tavenas S. Bornes inférieures et supérieures dans les circuits arithmétiques : Upper and lower bounds for arithmetic circuits. [Doctoral Dissertation]. Lyon, École normale supérieure; 2014. Available from: http://www.theses.fr/2014ENSL0921


Penn State University

7. Chen, William Y. Moduli Interpretations for Noncongruence Modular Curves.

Degree: PhD, Mathematics, 2016, Penn State University

 We define the notion of a ``Teichmuller level structure'' (or simply G-structure) for punctured elliptic curves, which are associated to finite 2-generated groups G. When… (more)

Subjects/Keywords: number theory; arithmetic geometry; algebraic geometry; modular curves; galois theory; noncongruence subgroups; modular forms; unbounded denominators conjecture; elliptic curves; moduli problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, W. Y. (2016). Moduli Interpretations for Noncongruence Modular Curves. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/6w924b80w

Chicago Manual of Style (16th Edition):

Chen, William Y. “Moduli Interpretations for Noncongruence Modular Curves.” 2016. Doctoral Dissertation, Penn State University. Accessed July 10, 2020. https://etda.libraries.psu.edu/catalog/6w924b80w.

MLA Handbook (7th Edition):

Chen, William Y. “Moduli Interpretations for Noncongruence Modular Curves.” 2016. Web. 10 Jul 2020.

Vancouver:

Chen WY. Moduli Interpretations for Noncongruence Modular Curves. [Internet] [Doctoral dissertation]. Penn State University; 2016. [cited 2020 Jul 10]. Available from: https://etda.libraries.psu.edu/catalog/6w924b80w.

Council of Science Editors:

Chen WY. Moduli Interpretations for Noncongruence Modular Curves. [Doctoral Dissertation]. Penn State University; 2016. Available from: https://etda.libraries.psu.edu/catalog/6w924b80w


University of Rochester

8. Sookdeo, Vijay A. (1979 - ). Arithmetic properties of orbits of rational functions.

Degree: PhD, 2009, University of Rochester

[Abstract would not render] – Submitter.

Subjects/Keywords: Dynamics; Arithmetic; Number theory; Algebraic geometry; Diophantine geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sookdeo, V. A. (. -. ). (2009). Arithmetic properties of orbits of rational functions. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/7834

Chicago Manual of Style (16th Edition):

Sookdeo, Vijay A (1979 - ). “Arithmetic properties of orbits of rational functions.” 2009. Doctoral Dissertation, University of Rochester. Accessed July 10, 2020. http://hdl.handle.net/1802/7834.

MLA Handbook (7th Edition):

Sookdeo, Vijay A (1979 - ). “Arithmetic properties of orbits of rational functions.” 2009. Web. 10 Jul 2020.

Vancouver:

Sookdeo VA(-). Arithmetic properties of orbits of rational functions. [Internet] [Doctoral dissertation]. University of Rochester; 2009. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1802/7834.

Council of Science Editors:

Sookdeo VA(-). Arithmetic properties of orbits of rational functions. [Doctoral Dissertation]. University of Rochester; 2009. Available from: http://hdl.handle.net/1802/7834

9. Le Rudulier, Cécile. Points algébriques de hauteur bornée : Algebraic points of bounded height.

Degree: Docteur es, Mathématiques et applications, 2014, Rennes 1

L'étude de la répartition des points rationnels ou algébriques d'une variété algébrique selon leur hauteur est un problème classique de géométrie diophantienne. Dans cette thèse,… (more)

Subjects/Keywords: Théorie des nombres; Géométrie algébrique arithmétique; Points rationnels; Schémas de Hilbert; Number theory; Arithmetic algebraic geometry; Rational points; Hilbert schemes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Le Rudulier, C. (2014). Points algébriques de hauteur bornée : Algebraic points of bounded height. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2014REN1S073

Chicago Manual of Style (16th Edition):

Le Rudulier, Cécile. “Points algébriques de hauteur bornée : Algebraic points of bounded height.” 2014. Doctoral Dissertation, Rennes 1. Accessed July 10, 2020. http://www.theses.fr/2014REN1S073.

MLA Handbook (7th Edition):

Le Rudulier, Cécile. “Points algébriques de hauteur bornée : Algebraic points of bounded height.” 2014. Web. 10 Jul 2020.

Vancouver:

Le Rudulier C. Points algébriques de hauteur bornée : Algebraic points of bounded height. [Internet] [Doctoral dissertation]. Rennes 1; 2014. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2014REN1S073.

Council of Science Editors:

Le Rudulier C. Points algébriques de hauteur bornée : Algebraic points of bounded height. [Doctoral Dissertation]. Rennes 1; 2014. Available from: http://www.theses.fr/2014REN1S073


University of Texas – Austin

10. Sulyma, Yuri John Fraser. Equivariant aspects of topological Hochschild homology.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

 We study two invariants of topological Hochschild homology coming from equivariant homotopy theory: its RO(C [subscript p superscript n])-graded homotopy Mackey functors, and the regular… (more)

Subjects/Keywords: Arithmetic geometry; Homotopy theory; Topological Hochschild homology; Prismatic cohomology; Slice filtration; Equivariant homotopy theory; Number theory; Algebraic topology; Witt vectors

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sulyma, Y. J. F. (2019). Equivariant aspects of topological Hochschild homology. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5788

Chicago Manual of Style (16th Edition):

Sulyma, Yuri John Fraser. “Equivariant aspects of topological Hochschild homology.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed July 10, 2020. http://dx.doi.org/10.26153/tsw/5788.

MLA Handbook (7th Edition):

Sulyma, Yuri John Fraser. “Equivariant aspects of topological Hochschild homology.” 2019. Web. 10 Jul 2020.

Vancouver:

Sulyma YJF. Equivariant aspects of topological Hochschild homology. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2020 Jul 10]. Available from: http://dx.doi.org/10.26153/tsw/5788.

Council of Science Editors:

Sulyma YJF. Equivariant aspects of topological Hochschild homology. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5788


University of Western Ontario

11. Yan, Youlong. Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties.

Degree: 2014, University of Western Ontario

 The derived category of coherent sheaves on a smooth projective variety is an important object of study in algebraic geometry. One important device relevant for… (more)

Subjects/Keywords: Derived category of coherent sheaves; tilting sheaf; Brauer group; Brauer-Severi schemes; arithmetic toric varieities; descent; Algebraic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yan, Y. (2014). Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/2312

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yan, Youlong. “Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties.” 2014. Thesis, University of Western Ontario. Accessed July 10, 2020. https://ir.lib.uwo.ca/etd/2312.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yan, Youlong. “Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties.” 2014. Web. 10 Jul 2020.

Vancouver:

Yan Y. Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties. [Internet] [Thesis]. University of Western Ontario; 2014. [cited 2020 Jul 10]. Available from: https://ir.lib.uwo.ca/etd/2312.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yan Y. Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties. [Thesis]. University of Western Ontario; 2014. Available from: https://ir.lib.uwo.ca/etd/2312

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

12. Castañeda Santos, Diana Carolina. Rational approximations on smooth rational surfaces.

Degree: 2019, University of Waterloo

 In this thesis, we study a conjecture made by D. McKinnon about rational approximations to rational points in algebraic varieties. The conjecture states that if… (more)

Subjects/Keywords: Diophantine approximations; Algebraic geometry; Birational geometry; Arithmetic geometry; Complex algebraic surfaces

…reformulated in algebraic geometry. Given a rational point in an algebraic variety defined over a… …theorem in number theory is its connections with arithmetic progressions and distribution of… …x28;1844)). Let x be a real algebraic number of degree d ≥ 2, 1 then for any > 0 there… …implies that algebraic numbers cannot be closely approximated by rational numbers. Liouville… …Roth (1955)). Let x be a real algebraic number, then for any > 0 there 1… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Castañeda Santos, D. C. (2019). Rational approximations on smooth rational surfaces. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/14859

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Castañeda Santos, Diana Carolina. “Rational approximations on smooth rational surfaces.” 2019. Thesis, University of Waterloo. Accessed July 10, 2020. http://hdl.handle.net/10012/14859.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Castañeda Santos, Diana Carolina. “Rational approximations on smooth rational surfaces.” 2019. Web. 10 Jul 2020.

Vancouver:

Castañeda Santos DC. Rational approximations on smooth rational surfaces. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10012/14859.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Castañeda Santos DC. Rational approximations on smooth rational surfaces. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/14859

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Xu, Daxin. Correspondances de Simpson p-adique et modulo pⁿ : P-adic and modulo pⁿ Simpson correspondences.

Degree: Docteur es, Mathématiques fondamentales, 2017, Université Paris-Saclay (ComUE)

Cette thèse est consacrée à deux variantes arithmétiques de la correspondance de Simpson. Dans la première partie, on compare la correspondance de Simpson p-adique à… (more)

Subjects/Keywords: Théorie de Hodge p-adique; Cohomologie p-adique; Cohomologie cristalline; Géométrie algébrique arithmétique; P-adic Hodge theory; P-adic cohomology; Crystalline cohomology; Arithmetic algebraic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xu, D. (2017). Correspondances de Simpson p-adique et modulo pⁿ : P-adic and modulo pⁿ Simpson correspondences. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2017SACLS133

Chicago Manual of Style (16th Edition):

Xu, Daxin. “Correspondances de Simpson p-adique et modulo pⁿ : P-adic and modulo pⁿ Simpson correspondences.” 2017. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed July 10, 2020. http://www.theses.fr/2017SACLS133.

MLA Handbook (7th Edition):

Xu, Daxin. “Correspondances de Simpson p-adique et modulo pⁿ : P-adic and modulo pⁿ Simpson correspondences.” 2017. Web. 10 Jul 2020.

Vancouver:

Xu D. Correspondances de Simpson p-adique et modulo pⁿ : P-adic and modulo pⁿ Simpson correspondences. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2017. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2017SACLS133.

Council of Science Editors:

Xu D. Correspondances de Simpson p-adique et modulo pⁿ : P-adic and modulo pⁿ Simpson correspondences. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2017. Available from: http://www.theses.fr/2017SACLS133

14. Ambrosi, Emiliano. l-adic,p-adic and geometric invariants in families of varieties. : Invariants l-adiques, p-adiques et géométriques en familles de variétés.

Degree: Docteur es, Mathématiques fondamentales, 2019, Université Paris-Saclay (ComUE)

 Cette thèse est divisée en huit chapitres. D’abord, dans le Chapitre 1, on présente des résultats et des outils déjà connus qu’on utilisera dans la… (more)

Subjects/Keywords: Géométrie arithmétique; Groupe fondamental étale; Caractéristique positive; Familles de variétés; F-Isocristaux (sur)convergents; Cycles algébriques; Arithmetic geometry; Positive characteristic; Families of varieties; Étale fundamental group; (over)convergent F-Isocrystals; Algebraic cycles; 516.35

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ambrosi, E. (2019). l-adic,p-adic and geometric invariants in families of varieties. : Invariants l-adiques, p-adiques et géométriques en familles de variétés. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2019SACLX019

Chicago Manual of Style (16th Edition):

Ambrosi, Emiliano. “l-adic,p-adic and geometric invariants in families of varieties. : Invariants l-adiques, p-adiques et géométriques en familles de variétés.” 2019. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed July 10, 2020. http://www.theses.fr/2019SACLX019.

MLA Handbook (7th Edition):

Ambrosi, Emiliano. “l-adic,p-adic and geometric invariants in families of varieties. : Invariants l-adiques, p-adiques et géométriques en familles de variétés.” 2019. Web. 10 Jul 2020.

Vancouver:

Ambrosi E. l-adic,p-adic and geometric invariants in families of varieties. : Invariants l-adiques, p-adiques et géométriques en familles de variétés. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2019. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2019SACLX019.

Council of Science Editors:

Ambrosi E. l-adic,p-adic and geometric invariants in families of varieties. : Invariants l-adiques, p-adiques et géométriques en familles de variétés. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2019. Available from: http://www.theses.fr/2019SACLX019


Leiden University

15. Lyczak, J.T. Arithmetic of affine del Pezzo surfaces.

Degree: 2019, Leiden University

 In this thesis integral points on affine del Pezzo surfaces are studied. The first two chapters offer a review of arithmetic techniques and del Pezzo… (more)

Subjects/Keywords: Algebraic geometry; Arithmetic geometry; Brauer groups; Brauer-Manin obstruction; Del Pezzo surfaces; Integral points; Integral Hasse principle; Log K3 surfaces; Algebraic geometry; Arithmetic geometry; Brauer groups; Brauer-Manin obstruction; Del Pezzo surfaces; Integral points; Integral Hasse principle; Log K3 surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lyczak, J. T. (2019). Arithmetic of affine del Pezzo surfaces. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/78474

Chicago Manual of Style (16th Edition):

Lyczak, J T. “Arithmetic of affine del Pezzo surfaces.” 2019. Doctoral Dissertation, Leiden University. Accessed July 10, 2020. http://hdl.handle.net/1887/78474.

MLA Handbook (7th Edition):

Lyczak, J T. “Arithmetic of affine del Pezzo surfaces.” 2019. Web. 10 Jul 2020.

Vancouver:

Lyczak JT. Arithmetic of affine del Pezzo surfaces. [Internet] [Doctoral dissertation]. Leiden University; 2019. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1887/78474.

Council of Science Editors:

Lyczak JT. Arithmetic of affine del Pezzo surfaces. [Doctoral Dissertation]. Leiden University; 2019. Available from: http://hdl.handle.net/1887/78474

16. Hanselman, J. Semi-stable reduction and models of curves.

Degree: 2015, Universiteit Utrecht

 Let S be a Dedekind scheme of dimension 1 and let X be a smooth, projective, geometrically connected curve of genus g>=2 over the function… (more)

Subjects/Keywords: semi-stable reduction; semi-stable curve; models of curves; Artin-Winters; Deligne-Mumford; Liu; Algebraic Geometry; Arithmetic Geometry; Birational Geometry; blowing up; Intersection Theory; lifting morphisms

arithmetic surface. Example 1.13. Let OK be a discrete valuation ring with uniformizer t and… …return to fibered surfaces. Proposition 1.30. Let π : X → S be an arithmetic surface. Then X… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hanselman, J. (2015). Semi-stable reduction and models of curves. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/320791

Chicago Manual of Style (16th Edition):

Hanselman, J. “Semi-stable reduction and models of curves.” 2015. Masters Thesis, Universiteit Utrecht. Accessed July 10, 2020. http://dspace.library.uu.nl:8080/handle/1874/320791.

MLA Handbook (7th Edition):

Hanselman, J. “Semi-stable reduction and models of curves.” 2015. Web. 10 Jul 2020.

Vancouver:

Hanselman J. Semi-stable reduction and models of curves. [Internet] [Masters thesis]. Universiteit Utrecht; 2015. [cited 2020 Jul 10]. Available from: http://dspace.library.uu.nl:8080/handle/1874/320791.

Council of Science Editors:

Hanselman J. Semi-stable reduction and models of curves. [Masters Thesis]. Universiteit Utrecht; 2015. Available from: http://dspace.library.uu.nl:8080/handle/1874/320791

17. Meyer, Jeffrey S. On the Totally Geodesic Commensurability Spectrum of Arithmetic Locally Symmetric Spaces.

Degree: PhD, Mathematics, 2013, University of Michigan

 Mark Kac famously posited in 1966, “can you hear the shape of a drum?” This question simply and elegantly summarizes our quest in spectral geometry(more)

Subjects/Keywords: Spectral Geometry; Arithmetic Locally Symmetric Spaces; Totally Geodesic Subspaces; Algebraic Groups Over Local and Global Fields; Mathematics; Science

…of class field theory, algebraic groups, and hence arithmetic locally symmetric spaces… …many numbers. We call such a collection a spectrum. In spectral geometry we assign (… …Theorem 1.3.2 (Reid [Re92] 1992). Let M1 and M2 be arithmetic hyperbolic 2… …arithmetic hyperbolic 3-manifolds. Then QL(M1 ) = QL(M2 ) implies M1 and M2 are… …x5D; 2012). 1. Let M1 and M2 be arithmetic locally symmetric spaces coming from… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meyer, J. S. (2013). On the Totally Geodesic Commensurability Spectrum of Arithmetic Locally Symmetric Spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/99870

Chicago Manual of Style (16th Edition):

Meyer, Jeffrey S. “On the Totally Geodesic Commensurability Spectrum of Arithmetic Locally Symmetric Spaces.” 2013. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/99870.

MLA Handbook (7th Edition):

Meyer, Jeffrey S. “On the Totally Geodesic Commensurability Spectrum of Arithmetic Locally Symmetric Spaces.” 2013. Web. 10 Jul 2020.

Vancouver:

Meyer JS. On the Totally Geodesic Commensurability Spectrum of Arithmetic Locally Symmetric Spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2013. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/99870.

Council of Science Editors:

Meyer JS. On the Totally Geodesic Commensurability Spectrum of Arithmetic Locally Symmetric Spaces. [Doctoral Dissertation]. University of Michigan; 2013. Available from: http://hdl.handle.net/2027.42/99870

.