Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Anytime Anywhere Methodology). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Virginia Tech

1. Pan, Long. Effective and Efficient Methodologies for Social Network Analysis.

Degree: PhD, Computer Science, 2007, Virginia Tech

Performing social network analysis (SNA) requires a set of powerful techniques to analyze structural information contained in interactions between social entities. Many SNA technologies and methodologies have been developed and have successfully provided significant insights for small-scale interactions. However, these techniques are not suitable for analyzing large social networks, which are very popular and important in various fields and have special structural properties that cannot be obtained from small networks or their analyses. There are a number of issues that need to be further studied in the design of current SNA techniques. A number of key issues can be embodied in three fundamental and critical challenges: long processing time, large computational resource requirements, and network dynamism. In order to address these challenges, we discuss an anytime-anywhere methodology based on a parallel/distributed computational framework to effectively and efficiently analyze large and dynamic social networks. In our methodology, large social networks are decomposed into intra-related smaller parts. A coarse-level of network analysis is built based on comprehensively analyzing each part. The partial analysis results are incrementally refined over time. Also, during the analyses process, network dynamic changes are effectively and efficiently adapted based on the obtained results. In order to evaluate and validate our methodology, we implement our methodology for a set of SNA metrics which are significant for SNA applications and cover a wide range of difficulties. Through rigorous theoretical and experimental analyses, we demonstrate that our anytime-anywhere methodology is Advisors/Committee Members: Santos, Eunice E. (committeechair), Santos, Eugene Jr. (committee member), Sotelino, Elisa D. (committee member), Brown, Ezra A. (committee member), Cao, Yang (committee member).

Subjects/Keywords: Anytime-Anywhere Methodology; Parallel/Distributed Computing; Social Network Analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pan, L. (2007). Effective and Efficient Methodologies for Social Network Analysis. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/25962

Chicago Manual of Style (16th Edition):

Pan, Long. “Effective and Efficient Methodologies for Social Network Analysis.” 2007. Doctoral Dissertation, Virginia Tech. Accessed January 17, 2021. http://hdl.handle.net/10919/25962.

MLA Handbook (7th Edition):

Pan, Long. “Effective and Efficient Methodologies for Social Network Analysis.” 2007. Web. 17 Jan 2021.

Vancouver:

Pan L. Effective and Efficient Methodologies for Social Network Analysis. [Internet] [Doctoral dissertation]. Virginia Tech; 2007. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/10919/25962.

Council of Science Editors:

Pan L. Effective and Efficient Methodologies for Social Network Analysis. [Doctoral Dissertation]. Virginia Tech; 2007. Available from: http://hdl.handle.net/10919/25962

.