Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Algebraische Topologie). Showing records 1 – 30 of 62 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

Languages

▼ Search Limiters


Ruhr Universität Bochum

1. Möllers, Jan-David. K(1)-local complex E∞-orientations.

Degree: 2010, Ruhr Universität Bochum

 In dieser Dissertation werden K(1)-lokale komplexe E_unendlich Orientierungen und H_unendlich Orientierungen untersucht (E_unendlich Abbildungen vom komplexen Kobordismenspektrum in ein K(1)-lokales E_unendlich Spektrum). Das Hauptresultat liefert… (more)

Subjects/Keywords: Algebraische Topologie; Stabile Homotopietheorie; Dimension unendlich; Bernoullische Zahl

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Möllers, J. (2010). K(1)-local complex E∞-orientations. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Möllers, Jan-David. “K(1)-local complex E∞-orientations.” 2010. Thesis, Ruhr Universität Bochum. Accessed November 17, 2019. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Möllers, Jan-David. “K(1)-local complex E∞-orientations.” 2010. Web. 17 Nov 2019.

Vancouver:

Möllers J. K(1)-local complex E∞-orientations. [Internet] [Thesis]. Ruhr Universität Bochum; 2010. [cited 2019 Nov 17]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Möllers J. K(1)-local complex E∞-orientations. [Thesis]. Ruhr Universität Bochum; 2010. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

2. Kröncke, Klaus. Comparison theorems in Riemannian geometry.

Degree: 2010, University of Vienna

Im ersten Kapitel führen wir zunächst Grundkonzepte der Krümmung ein. Danach fassen wir die wichtigsten Resultate aus der Überlagerungstheorie zusammen. Zuletzt beschreiben wir Mannigfaltigkeiten konstanter… (more)

Subjects/Keywords: 31.52 Differentialgeometrie; 31.55 Globale Analysis; 31.61 Algebraische Topologie; Globale Riemannsche Geometrie; Global Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kröncke, K. (2010). Comparison theorems in Riemannian geometry. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Thesis, University of Vienna. Accessed November 17, 2019. http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Web. 17 Nov 2019.

Vancouver:

Kröncke K. Comparison theorems in Riemannian geometry. [Internet] [Thesis]. University of Vienna; 2010. [cited 2019 Nov 17]. Available from: http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kröncke K. Comparison theorems in Riemannian geometry. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Heijne, Bas Leonard. Elliptic delsarte surfaces.

Degree: 2011, NARCIS

 Een elliptische kromme is een kromme waarop een optelling gedefinieerd is. Een elliptisch oppervlak is vervolgens een oppervlak dat bestaat uit is opgebouwd uit oneindig… (more)

Subjects/Keywords: proefschriften (vorm); elliptische oppervlakten; ellipsen (wiskunde); algebraische topologie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Heijne, B. L. (2011). Elliptic delsarte surfaces. (Doctoral Dissertation). NARCIS. Retrieved from https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html

Chicago Manual of Style (16th Edition):

Heijne, Bas Leonard. “Elliptic delsarte surfaces.” 2011. Doctoral Dissertation, NARCIS. Accessed November 17, 2019. https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html.

MLA Handbook (7th Edition):

Heijne, Bas Leonard. “Elliptic delsarte surfaces.” 2011. Web. 17 Nov 2019.

Vancouver:

Heijne BL. Elliptic delsarte surfaces. [Internet] [Doctoral dissertation]. NARCIS; 2011. [cited 2019 Nov 17]. Available from: https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html.

Council of Science Editors:

Heijne BL. Elliptic delsarte surfaces. [Doctoral Dissertation]. NARCIS; 2011. Available from: https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html


University of Vienna

4. Wellisch, Manuel. Knotentheorie und Spoke Diagrams.

Degree: 2017, University of Vienna

 E. Harasko hat mit der Einführung der Spoke Diagrams und den Reidemeister-Bewegungen für Spoke Diagrams eine neue und effektive Methode geschaffen Knoten zu vereinfachen (siehe… (more)

Subjects/Keywords: 31.61 Algebraische Topologie; 31.69 Topologie: Sonstiges; 31.99 Mathematik: Sonstiges; 31.00 Mathematik: Allgemeines; Knoten / Knotentheorie / Spoke Diagrams / Reidemeister / Harasko / Wellisch / Spokes; knots / knot theory / spoke diagrams / Reidemeister / Harasko / Wellisch / spokes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wellisch, M. (2017). Knotentheorie und Spoke Diagrams. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/47004/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wellisch, Manuel. “Knotentheorie und Spoke Diagrams.” 2017. Thesis, University of Vienna. Accessed November 17, 2019. http://othes.univie.ac.at/47004/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wellisch, Manuel. “Knotentheorie und Spoke Diagrams.” 2017. Web. 17 Nov 2019.

Vancouver:

Wellisch M. Knotentheorie und Spoke Diagrams. [Internet] [Thesis]. University of Vienna; 2017. [cited 2019 Nov 17]. Available from: http://othes.univie.ac.at/47004/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wellisch M. Knotentheorie und Spoke Diagrams. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/47004/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

5. Thöni, Werner. Aequivariante Homotopie und Cohomologie.

Degree: 1964, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); KOHOMOLOGIE-OPERATIONEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); COHOMOLOGY OPERATIONS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thöni, W. (1964). Aequivariante Homotopie und Cohomologie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132448

Chicago Manual of Style (16th Edition):

Thöni, Werner. “Aequivariante Homotopie und Cohomologie.” 1964. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/132448.

MLA Handbook (7th Edition):

Thöni, Werner. “Aequivariante Homotopie und Cohomologie.” 1964. Web. 17 Nov 2019.

Vancouver:

Thöni W. Aequivariante Homotopie und Cohomologie. [Internet] [Doctoral dissertation]. ETH Zürich; 1964. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/132448.

Council of Science Editors:

Thöni W. Aequivariante Homotopie und Cohomologie. [Doctoral Dissertation]. ETH Zürich; 1964. Available from: http://hdl.handle.net/20.500.11850/132448


ETH Zürich

6. Fatt, Milton Jacob. On the homotopical approach to algebraic topology and the Hurewicz theorem.

Degree: 1963, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fatt, M. J. (1963). On the homotopical approach to algebraic topology and the Hurewicz theorem. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131384

Chicago Manual of Style (16th Edition):

Fatt, Milton Jacob. “On the homotopical approach to algebraic topology and the Hurewicz theorem.” 1963. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/131384.

MLA Handbook (7th Edition):

Fatt, Milton Jacob. “On the homotopical approach to algebraic topology and the Hurewicz theorem.” 1963. Web. 17 Nov 2019.

Vancouver:

Fatt MJ. On the homotopical approach to algebraic topology and the Hurewicz theorem. [Internet] [Doctoral dissertation]. ETH Zürich; 1963. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/131384.

Council of Science Editors:

Fatt MJ. On the homotopical approach to algebraic topology and the Hurewicz theorem. [Doctoral Dissertation]. ETH Zürich; 1963. Available from: http://hdl.handle.net/20.500.11850/131384


ETH Zürich

7. Meier, Werner. Beiträge zur algebraischen Homotopietheorie der Moduln.

Degree: 1962, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meier, W. (1962). Beiträge zur algebraischen Homotopietheorie der Moduln. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131688

Chicago Manual of Style (16th Edition):

Meier, Werner. “Beiträge zur algebraischen Homotopietheorie der Moduln.” 1962. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/131688.

MLA Handbook (7th Edition):

Meier, Werner. “Beiträge zur algebraischen Homotopietheorie der Moduln.” 1962. Web. 17 Nov 2019.

Vancouver:

Meier W. Beiträge zur algebraischen Homotopietheorie der Moduln. [Internet] [Doctoral dissertation]. ETH Zürich; 1962. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/131688.

Council of Science Editors:

Meier W. Beiträge zur algebraischen Homotopietheorie der Moduln. [Doctoral Dissertation]. ETH Zürich; 1962. Available from: http://hdl.handle.net/20.500.11850/131688


ETH Zürich

8. Eckmann, Beno. Zur Homotopietheorie gefaserter Räume.

Degree: 1941, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eckmann, B. (1941). Zur Homotopietheorie gefaserter Räume. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133370

Chicago Manual of Style (16th Edition):

Eckmann, Beno. “Zur Homotopietheorie gefaserter Räume.” 1941. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/133370.

MLA Handbook (7th Edition):

Eckmann, Beno. “Zur Homotopietheorie gefaserter Räume.” 1941. Web. 17 Nov 2019.

Vancouver:

Eckmann B. Zur Homotopietheorie gefaserter Räume. [Internet] [Doctoral dissertation]. ETH Zürich; 1941. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/133370.

Council of Science Editors:

Eckmann B. Zur Homotopietheorie gefaserter Räume. [Doctoral Dissertation]. ETH Zürich; 1941. Available from: http://hdl.handle.net/20.500.11850/133370


ETH Zürich

9. Gysin, Werner. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten.

Degree: 1941, ETH Zürich

Subjects/Keywords: HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); KOMPLEXE (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); COMPLEXES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gysin, W. (1941). Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133473

Chicago Manual of Style (16th Edition):

Gysin, Werner. “Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten.” 1941. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/133473.

MLA Handbook (7th Edition):

Gysin, Werner. “Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten.” 1941. Web. 17 Nov 2019.

Vancouver:

Gysin W. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. [Internet] [Doctoral dissertation]. ETH Zürich; 1941. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/133473.

Council of Science Editors:

Gysin W. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. [Doctoral Dissertation]. ETH Zürich; 1941. Available from: http://hdl.handle.net/20.500.11850/133473


ETH Zürich

10. Curjel, Caspar Robert. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.

Degree: 1961, ETH Zürich

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Curjel, C. R. (1961). Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135022

Chicago Manual of Style (16th Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/135022.

MLA Handbook (7th Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Web. 17 Nov 2019.

Vancouver:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1961. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/135022.

Council of Science Editors:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Doctoral Dissertation]. ETH Zürich; 1961. Available from: http://hdl.handle.net/20.500.11850/135022


ETH Zürich

11. Stamm, Emil. Ueber die Homotopiegruppen gewisser Faserungen.

Degree: 1964, ETH Zürich

Subjects/Keywords: FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stamm, E. (1964). Ueber die Homotopiegruppen gewisser Faserungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131691

Chicago Manual of Style (16th Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/131691.

MLA Handbook (7th Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Web. 17 Nov 2019.

Vancouver:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1964. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/131691.

Council of Science Editors:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Doctoral Dissertation]. ETH Zürich; 1964. Available from: http://hdl.handle.net/20.500.11850/131691


University of Vienna

12. Haiden, Fabian. Refined combinatorial torsion.

Degree: 2010, University of Vienna

Wir untersuchen eine Variante der Reidemeister- und Whitehead-Torsion von CW-Komplexen und glatten Mannigfaltigkeiten von V. Turaev. Die notwendigen algebraischen Hilfsmittel werden dabei in Analogie zu… (more)

Subjects/Keywords: 31.61 Algebraische Topologie; 31.65 Mannigfaltigkeiten, Zellkomplexe; 31.27 Kategorientheorie; monoidale Kategorie / 2-Gruppe / algebraische K-Theorie / Determinantenlinie / Quasiisomorphismus / Whitehead-Gruppe / Whitehead-Torsion / Reidemeister-Torsion / Morse-Theorie / Scheibenbündel; monoidal category / 2-group / algebraic K-theory / determinant line / quasi-isomorphism / Whitehead group / Whitehead torsion / Reidemeister torsion / Morse-theory / disc bundle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haiden, F. (2010). Refined combinatorial torsion. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/9916/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Haiden, Fabian. “Refined combinatorial torsion.” 2010. Thesis, University of Vienna. Accessed November 17, 2019. http://othes.univie.ac.at/9916/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Haiden, Fabian. “Refined combinatorial torsion.” 2010. Web. 17 Nov 2019.

Vancouver:

Haiden F. Refined combinatorial torsion. [Internet] [Thesis]. University of Vienna; 2010. [cited 2019 Nov 17]. Available from: http://othes.univie.ac.at/9916/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Haiden F. Refined combinatorial torsion. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/9916/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

13. Rovelli, Luca. Explicit equivariant compactification and Riemann-Roch for algebraic groups.

Degree: 2002, ETH Zürich

Subjects/Keywords: RIEMANN-ROCH-THEOREM FÜR ALGEBRAISCHE VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); KOMPAKTIFIZIERUNGEN (TOPOLOGIE); ABELSCHE GRUPPEN (ALGEBRA); ALGEBRAISCHE GRUPPEN (ALGEBRAISCHE GEOMETRIE); FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); RIEMANN-ROCH THEOREM FOR ALGEBRAIC VARIETIES (ALGEBRAIC GEOMETRY); COMPACTIFICATIONS (TOPOLOGY); ABELIAN GROUPS (ALGEBRA); ALGEBRAIC GROUPS (ALGEBRAIC GEOMETRY); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rovelli, L. (2002). Explicit equivariant compactification and Riemann-Roch for algebraic groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146972

Chicago Manual of Style (16th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/146972.

MLA Handbook (7th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Web. 17 Nov 2019.

Vancouver:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/146972.

Council of Science Editors:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146972


ETH Zürich

14. Specker, Ernst P. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.

Degree: 1949, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); DREIDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); THREE-DIMENSIONAL MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Specker, E. P. (1949). Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133460

Chicago Manual of Style (16th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/133460.

MLA Handbook (7th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Web. 17 Nov 2019.

Vancouver:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Internet] [Doctoral dissertation]. ETH Zürich; 1949. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/133460.

Council of Science Editors:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Doctoral Dissertation]. ETH Zürich; 1949. Available from: http://hdl.handle.net/20.500.11850/133460


ETH Zürich

15. Janda, Felix. Relations in the tautological ring.

Degree: 2015, ETH Zürich

Subjects/Keywords: MODULRÄUME (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE ZYKLEN (ALGEBRAISCHE GEOMETRIE); RINGTHEORIE (ALGEBRA); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); MODULI SPACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ALGEBRAIC CYCLES (ALGEBRAIC GEOMETRY); RING THEORY (ALGEBRA); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Janda, F. (2015). Relations in the tautological ring. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155246

Chicago Manual of Style (16th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/155246.

MLA Handbook (7th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Web. 17 Nov 2019.

Vancouver:

Janda F. Relations in the tautological ring. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/155246.

Council of Science Editors:

Janda F. Relations in the tautological ring. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155246


ETH Zürich

16. Brändli, Emil Rudolf. Beiträge zur Theorie des Cohomologieringes.

Degree: 1948, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN UND KOHOMOLOGIEGRUPPEN SIMPLIZIALER MENGEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); KOHOMOLOGIE-OPERATIONEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY AND COHOMOLOGY GROUPS OF SIMPLICIAL SETS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); COHOMOLOGY OPERATIONS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brändli, E. R. (1948). Beiträge zur Theorie des Cohomologieringes. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135213

Chicago Manual of Style (16th Edition):

Brändli, Emil Rudolf. “Beiträge zur Theorie des Cohomologieringes.” 1948. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/135213.

MLA Handbook (7th Edition):

Brändli, Emil Rudolf. “Beiträge zur Theorie des Cohomologieringes.” 1948. Web. 17 Nov 2019.

Vancouver:

Brändli ER. Beiträge zur Theorie des Cohomologieringes. [Internet] [Doctoral dissertation]. ETH Zürich; 1948. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/135213.

Council of Science Editors:

Brändli ER. Beiträge zur Theorie des Cohomologieringes. [Doctoral Dissertation]. ETH Zürich; 1948. Available from: http://hdl.handle.net/20.500.11850/135213


ETH Zürich

17. Ebersold, Johannes Michael. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.

Degree: 1955, ETH Zürich

Subjects/Keywords: FIXPUNKTE UND KOINZIDENZEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIXED POINTS AND COINCIDENCE POINTS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ebersold, J. M. (1955). Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132667

Chicago Manual of Style (16th Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/132667.

MLA Handbook (7th Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Web. 17 Nov 2019.

Vancouver:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Internet] [Doctoral dissertation]. ETH Zürich; 1955. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/132667.

Council of Science Editors:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Doctoral Dissertation]. ETH Zürich; 1955. Available from: http://hdl.handle.net/20.500.11850/132667


ETH Zürich

18. Kundert, Esayas. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.

Degree: 1951, ETH Zürich

Subjects/Keywords: FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); INTERSECTION THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kundert, E. (1951). Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131941

Chicago Manual of Style (16th Edition):

Kundert, Esayas. “Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.” 1951. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/131941.

MLA Handbook (7th Edition):

Kundert, Esayas. “Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.” 1951. Web. 17 Nov 2019.

Vancouver:

Kundert E. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. [Internet] [Doctoral dissertation]. ETH Zürich; 1951. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/131941.

Council of Science Editors:

Kundert E. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. [Doctoral Dissertation]. ETH Zürich; 1951. Available from: http://hdl.handle.net/20.500.11850/131941


ETH Zürich

19. Huber, Thomas. Rotation quasimorphisms for surfaces.

Degree: 2013, ETH Zürich

Subjects/Keywords: RÄUME KONSTANTER KRÜMMUNG (DIFFERENTIALGEOMETRIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SPACES OF CONSTANT CURVATURE (DIFFERENTIAL GEOMETRY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huber, T. (2013). Rotation quasimorphisms for surfaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153998

Chicago Manual of Style (16th Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/153998.

MLA Handbook (7th Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Web. 17 Nov 2019.

Vancouver:

Huber T. Rotation quasimorphisms for surfaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2013. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/153998.

Council of Science Editors:

Huber T. Rotation quasimorphisms for surfaces. [Doctoral Dissertation]. ETH Zürich; 2013. Available from: http://hdl.handle.net/20.500.11850/153998


ETH Zürich

20. Haug, Luis. On Lagrangian quantum homology and Lagrangian cobordisms.

Degree: 2014, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); LAGRANGE-MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); BORDISMUS + KOBORDISMUS (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); LAGRANGE MANIFOLDS (DIFFERENTIAL GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); BORDISM + COBORDISM (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haug, L. (2014). On Lagrangian quantum homology and Lagrangian cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154582

Chicago Manual of Style (16th Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/154582.

MLA Handbook (7th Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Web. 17 Nov 2019.

Vancouver:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/154582.

Council of Science Editors:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154582


ETH Zürich

21. Michelle Karlsson. Characteristic classes and bounded cohomology.

Degree: 2004, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SIMPLIZIALE KOMPLEXE + SIMPLIZIALE SCHEMEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); SIMPLICIAL COMPLEXES + SIMPLICIAL SCHEMES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karlsson, M. (2004). Characteristic classes and bounded cohomology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/148350

Chicago Manual of Style (16th Edition):

Karlsson, Michelle. “Characteristic classes and bounded cohomology.” 2004. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/148350.

MLA Handbook (7th Edition):

Karlsson, Michelle. “Characteristic classes and bounded cohomology.” 2004. Web. 17 Nov 2019.

Vancouver:

Karlsson M. Characteristic classes and bounded cohomology. [Internet] [Doctoral dissertation]. ETH Zürich; 2004. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/148350.

Council of Science Editors:

Karlsson M. Characteristic classes and bounded cohomology. [Doctoral Dissertation]. ETH Zürich; 2004. Available from: http://hdl.handle.net/20.500.11850/148350


ETH Zürich

22. Oberdieck, Georg. The enumerative geometry of the Hilbert schemes of points of a K3 surface.

Degree: 2015, ETH Zürich

Subjects/Keywords: HILBERTSCHEMEN (ALGEBRAISCHE GEOMETRIE); K3-FLÄCHEN + ENRIQUES-FLÄCHEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); HILBERT SCHEMES (ALGEBRAIC GEOMETRY); K3 SURFACES + ENRIQUES SURFACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oberdieck, G. (2015). The enumerative geometry of the Hilbert schemes of points of a K3 surface. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155291

Chicago Manual of Style (16th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/155291.

MLA Handbook (7th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Web. 17 Nov 2019.

Vancouver:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/155291.

Council of Science Editors:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155291


University of Vienna

23. Bojko, Arkadij. Stability conditions on quivers and semistable non-commutative curve counting.

Degree: 2018, University of Vienna

Der Begriff von Stabilitätkondizionen auf triangulierten Kategorien wurde von T. Bridgeland in "Stability conditions on triangulated categories" eingeführt. Zusätzlich haben wir mit den nicht-kommutativen Kurven,… (more)

Subjects/Keywords: 31.27 Kategorientheorie; 31.12 Kombinatorik, Graphentheorie; 31.29 Algebra: Sonstiges; 31.50 Geometrie: Allgemeines; 31.23 Ideale, Ringe, Moduln, Algebren; 31.60 Topologie: Allgemeines; 31.25 Lineare Algebra, multilineare Algebra; 31.61 Algebraische Topologie; triangulierte Kategorien / derivierte Kategorien / Stabilitätbedingungen / Stabilitätkondizionen / nicht-kommutative / Kurven / semistabil / Representationen von Köchern; triangulated categories / derived categories / stability conditions / non-commutative curve counting / non-commutative / semistable / representations of quivers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bojko, A. (2018). Stability conditions on quivers and semistable non-commutative curve counting. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/52820/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Thesis, University of Vienna. Accessed November 17, 2019. http://othes.univie.ac.at/52820/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Web. 17 Nov 2019.

Vancouver:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Internet] [Thesis]. University of Vienna; 2018. [cited 2019 Nov 17]. Available from: http://othes.univie.ac.at/52820/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Thesis]. University of Vienna; 2018. Available from: http://othes.univie.ac.at/52820/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

24. Stammbach, Urs. Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen.

Degree: 1966, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stammbach, U. (1966). Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131368

Chicago Manual of Style (16th Edition):

Stammbach, Urs. “Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen.” 1966. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/131368.

MLA Handbook (7th Edition):

Stammbach, Urs. “Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen.” 1966. Web. 17 Nov 2019.

Vancouver:

Stammbach U. Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1966. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/131368.

Council of Science Editors:

Stammbach U. Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen. [Doctoral Dissertation]. ETH Zürich; 1966. Available from: http://hdl.handle.net/20.500.11850/131368


University of Vienna

25. Vukadin, Ognjen. Arithmetic groups acting on quaternion hyperbolic spaces.

Degree: 2009, University of Vienna

In dieser Arbeit werden geometrische Methoden (, , , ) zur Konstruktion von Kohomologieklassen in lokal symmetrischen Räumen angewandt, um den Fall von arithmetisch definierten… (more)

Subjects/Keywords: 31.14 Zahlentheorie; 31.61 Algebraische Topologie; 31.30 Topologische Gruppen, Liegruppen; Arithmetische Gruppen / Kohomologie / Quaternionisch hyperbolische Räume; arithmetic groups / cohomology / quaternion hyperbolic spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vukadin, O. (2009). Arithmetic groups acting on quaternion hyperbolic spaces. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/4861/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vukadin, Ognjen. “Arithmetic groups acting on quaternion hyperbolic spaces.” 2009. Thesis, University of Vienna. Accessed November 17, 2019. http://othes.univie.ac.at/4861/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vukadin, Ognjen. “Arithmetic groups acting on quaternion hyperbolic spaces.” 2009. Web. 17 Nov 2019.

Vancouver:

Vukadin O. Arithmetic groups acting on quaternion hyperbolic spaces. [Internet] [Thesis]. University of Vienna; 2009. [cited 2019 Nov 17]. Available from: http://othes.univie.ac.at/4861/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vukadin O. Arithmetic groups acting on quaternion hyperbolic spaces. [Thesis]. University of Vienna; 2009. Available from: http://othes.univie.ac.at/4861/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

26. Rolli, Pascal. Split quasicocycles and defect spaces.

Degree: 2014, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rolli, P. (2014). Split quasicocycles and defect spaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154597

Chicago Manual of Style (16th Edition):

Rolli, Pascal. “Split quasicocycles and defect spaces.” 2014. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/154597.

MLA Handbook (7th Edition):

Rolli, Pascal. “Split quasicocycles and defect spaces.” 2014. Web. 17 Nov 2019.

Vancouver:

Rolli P. Split quasicocycles and defect spaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/154597.

Council of Science Editors:

Rolli P. Split quasicocycles and defect spaces. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154597


ETH Zürich

27. Kervaire, Michel André. Courbure intégrale généralisée et homotopie.

Degree: 1956, ETH Zürich

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kervaire, M. A. (1956). Courbure intégrale généralisée et homotopie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133361

Chicago Manual of Style (16th Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/133361.

MLA Handbook (7th Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Web. 17 Nov 2019.

Vancouver:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Internet] [Doctoral dissertation]. ETH Zürich; 1956. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/133361.

Council of Science Editors:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Doctoral Dissertation]. ETH Zürich; 1956. Available from: http://hdl.handle.net/20.500.11850/133361


ETH Zürich

28. Wang, Ming-Xi. Rational points and transcendental points.

Degree: 2011, ETH Zürich

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); ELLIPTIC FUNCTIONS + ELLIPTIC INTEGRALS (MATHEMATICAL ANALYSIS); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ELLIPTISCHE FUNKTIONEN + ELLIPTISCHE INTEGRALE (ANALYSIS); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); ENDOMORPHISM RINGS (ALGEBRA); ENDOMORPHISMENRINGE (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, M. (2011). Rational points and transcendental points. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/41776

Chicago Manual of Style (16th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/41776.

MLA Handbook (7th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Web. 17 Nov 2019.

Vancouver:

Wang M. Rational points and transcendental points. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/41776.

Council of Science Editors:

Wang M. Rational points and transcendental points. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/41776


ETH Zürich

29. Engelberger, René. Twisted compositions.

Degree: 2002, ETH Zürich

Subjects/Keywords: JORDANRINGE UND JORDANALGEBREN (ALGEBRA); GALOIS-KOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); SPEZIELLE ALGEBREN (ALGEBRA); JORDAN RINGS AND JORDAN ALGEBRAS (ALGEBRA); GALOIS COHOMOLOGY (ALGEBRAIC TOPOLOGY); INVARIANT THEORY (ALGEBRAIC GEOMETRY); SPECIAL ALGEBRAS (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Engelberger, R. (2002). Twisted compositions. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146462

Chicago Manual of Style (16th Edition):

Engelberger, René. “Twisted compositions.” 2002. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/146462.

MLA Handbook (7th Edition):

Engelberger, René. “Twisted compositions.” 2002. Web. 17 Nov 2019.

Vancouver:

Engelberger R. Twisted compositions. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/146462.

Council of Science Editors:

Engelberger R. Twisted compositions. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146462


ETH Zürich

30. Mislin, Guido. Ueber Gruppen, die in Cohomologie-Moore-Räumen operieren.

Degree: 1968, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); TOPOLOGISCHE TRANSFORMATIONSGRUPPEN (TOPOLOGIE); LIESCHE TRANSFORMATIONSGRUPPEN; HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); TOPOLOGICAL TRANSFORMATION GROUPS (TOPOLOGY); LIE TRANSFORMATION GROUPS; info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mislin, G. (1968). Ueber Gruppen, die in Cohomologie-Moore-Räumen operieren. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131419

Chicago Manual of Style (16th Edition):

Mislin, Guido. “Ueber Gruppen, die in Cohomologie-Moore-Räumen operieren.” 1968. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/131419.

MLA Handbook (7th Edition):

Mislin, Guido. “Ueber Gruppen, die in Cohomologie-Moore-Räumen operieren.” 1968. Web. 17 Nov 2019.

Vancouver:

Mislin G. Ueber Gruppen, die in Cohomologie-Moore-Räumen operieren. [Internet] [Doctoral dissertation]. ETH Zürich; 1968. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/131419.

Council of Science Editors:

Mislin G. Ueber Gruppen, die in Cohomologie-Moore-Räumen operieren. [Doctoral Dissertation]. ETH Zürich; 1968. Available from: http://hdl.handle.net/20.500.11850/131419

[1] [2] [3]

.