Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Algebraic number theory). Showing records 1 – 30 of 97 total matches.

[1] [2] [3] [4]

Search Limiters

Last 2 Years | English Only

Levels

Country

▼ Search Limiters


University of Rochester

1. Towsley, Adam D. (1980 - ). Reduction of orbits.

Degree: PhD, 2012, University of Rochester

 We consider two questions which arise from the iteration of rational maps φ (x) ∈ F (x), where F is a global field. The first… (more)

Subjects/Keywords: Algebraic number theory; Arithmetic dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Towsley, A. D. (. -. ). (2012). Reduction of orbits. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/21647

Chicago Manual of Style (16th Edition):

Towsley, Adam D (1980 - ). “Reduction of orbits.” 2012. Doctoral Dissertation, University of Rochester. Accessed January 20, 2020. http://hdl.handle.net/1802/21647.

MLA Handbook (7th Edition):

Towsley, Adam D (1980 - ). “Reduction of orbits.” 2012. Web. 20 Jan 2020.

Vancouver:

Towsley AD(-). Reduction of orbits. [Internet] [Doctoral dissertation]. University of Rochester; 2012. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/1802/21647.

Council of Science Editors:

Towsley AD(-). Reduction of orbits. [Doctoral Dissertation]. University of Rochester; 2012. Available from: http://hdl.handle.net/1802/21647


Columbia University

2. Li, Qirui. An intersection number formula for CM-cycles in Lubin-Tate spaces.

Degree: 2018, Columbia University

 We give an explicit formula for the arithmetic intersection number of CM cycles on Lubin-Tate spaces for all levels. We prove our formula by formulating… (more)

Subjects/Keywords: Mathematics; Number theory; Geometry, Algebraic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, Q. (2018). An intersection number formula for CM-cycles in Lubin-Tate spaces. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8KS880K

Chicago Manual of Style (16th Edition):

Li, Qirui. “An intersection number formula for CM-cycles in Lubin-Tate spaces.” 2018. Doctoral Dissertation, Columbia University. Accessed January 20, 2020. https://doi.org/10.7916/D8KS880K.

MLA Handbook (7th Edition):

Li, Qirui. “An intersection number formula for CM-cycles in Lubin-Tate spaces.” 2018. Web. 20 Jan 2020.

Vancouver:

Li Q. An intersection number formula for CM-cycles in Lubin-Tate spaces. [Internet] [Doctoral dissertation]. Columbia University; 2018. [cited 2020 Jan 20]. Available from: https://doi.org/10.7916/D8KS880K.

Council of Science Editors:

Li Q. An intersection number formula for CM-cycles in Lubin-Tate spaces. [Doctoral Dissertation]. Columbia University; 2018. Available from: https://doi.org/10.7916/D8KS880K


University of Waikato

3. Gilmore, Hamish Julian. Algebraic Properties of Chromatic Polynomials and Their Roots .

Degree: 2015, University of Waikato

 In this thesis we examine chromatic polynomials from the viewpoint of algebraic number theory. We relate algebraic properties of chromatic polynomials of graphs to structural… (more)

Subjects/Keywords: chromatic; polynomial; algebraic; number; theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gilmore, H. J. (2015). Algebraic Properties of Chromatic Polynomials and Their Roots . (Masters Thesis). University of Waikato. Retrieved from http://hdl.handle.net/10289/9367

Chicago Manual of Style (16th Edition):

Gilmore, Hamish Julian. “Algebraic Properties of Chromatic Polynomials and Their Roots .” 2015. Masters Thesis, University of Waikato. Accessed January 20, 2020. http://hdl.handle.net/10289/9367.

MLA Handbook (7th Edition):

Gilmore, Hamish Julian. “Algebraic Properties of Chromatic Polynomials and Their Roots .” 2015. Web. 20 Jan 2020.

Vancouver:

Gilmore HJ. Algebraic Properties of Chromatic Polynomials and Their Roots . [Internet] [Masters thesis]. University of Waikato; 2015. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/10289/9367.

Council of Science Editors:

Gilmore HJ. Algebraic Properties of Chromatic Polynomials and Their Roots . [Masters Thesis]. University of Waikato; 2015. Available from: http://hdl.handle.net/10289/9367


University of Oklahoma

4. Breeding II, Jeffery Edward. Irreducible non-cuspidal characters of GSp(4,Fq).

Degree: PhD, 2011, University of Oklahoma

 Admissible non – supercuspidal representations of GSp(4,F), where F is a local field of characteristic zero with an odd-ordered residue field Fq, have finite dimensional spaces… (more)

Subjects/Keywords: Number theory; Linear algebraic groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Breeding II, J. E. (2011). Irreducible non-cuspidal characters of GSp(4,Fq). (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/319020

Chicago Manual of Style (16th Edition):

Breeding II, Jeffery Edward. “Irreducible non-cuspidal characters of GSp(4,Fq).” 2011. Doctoral Dissertation, University of Oklahoma. Accessed January 20, 2020. http://hdl.handle.net/11244/319020.

MLA Handbook (7th Edition):

Breeding II, Jeffery Edward. “Irreducible non-cuspidal characters of GSp(4,Fq).” 2011. Web. 20 Jan 2020.

Vancouver:

Breeding II JE. Irreducible non-cuspidal characters of GSp(4,Fq). [Internet] [Doctoral dissertation]. University of Oklahoma; 2011. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/11244/319020.

Council of Science Editors:

Breeding II JE. Irreducible non-cuspidal characters of GSp(4,Fq). [Doctoral Dissertation]. University of Oklahoma; 2011. Available from: http://hdl.handle.net/11244/319020


Harvard University

5. MENZIES, Max. The p-curvature conjecture for the non-abelian Gauss-Manin connection.

Degree: PhD, 2019, Harvard University

Originally conjectured unpublished by Grothendieck, then formulated precisely by Katz in [9], the p-curvature conjecture is a local-global principle for algebraic differential equations. It is… (more)

Subjects/Keywords: Algebraic number theory; p-curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

MENZIES, M. (2019). The p-curvature conjecture for the non-abelian Gauss-Manin connection. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029466

Chicago Manual of Style (16th Edition):

MENZIES, Max. “The p-curvature conjecture for the non-abelian Gauss-Manin connection.” 2019. Doctoral Dissertation, Harvard University. Accessed January 20, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029466.

MLA Handbook (7th Edition):

MENZIES, Max. “The p-curvature conjecture for the non-abelian Gauss-Manin connection.” 2019. Web. 20 Jan 2020.

Vancouver:

MENZIES M. The p-curvature conjecture for the non-abelian Gauss-Manin connection. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2020 Jan 20]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029466.

Council of Science Editors:

MENZIES M. The p-curvature conjecture for the non-abelian Gauss-Manin connection. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029466


Oregon State University

6. Higdem, Roger Leon. Sums of subsets of certain algebraic systems.

Degree: PhD, Mathematics, 1970, Oregon State University

 In this thesis we investigate the extension of certain theorems of additive number theory to three algebraic systems. A generalization of a theorem by Cauchy… (more)

Subjects/Keywords: Algebraic number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Higdem, R. L. (1970). Sums of subsets of certain algebraic systems. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17569

Chicago Manual of Style (16th Edition):

Higdem, Roger Leon. “Sums of subsets of certain algebraic systems.” 1970. Doctoral Dissertation, Oregon State University. Accessed January 20, 2020. http://hdl.handle.net/1957/17569.

MLA Handbook (7th Edition):

Higdem, Roger Leon. “Sums of subsets of certain algebraic systems.” 1970. Web. 20 Jan 2020.

Vancouver:

Higdem RL. Sums of subsets of certain algebraic systems. [Internet] [Doctoral dissertation]. Oregon State University; 1970. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/1957/17569.

Council of Science Editors:

Higdem RL. Sums of subsets of certain algebraic systems. [Doctoral Dissertation]. Oregon State University; 1970. Available from: http://hdl.handle.net/1957/17569


Michigan State University

7. Butts, Thomas Randle, 1943-. On the genus field and its applications to four problems in algebraic number theory.

Degree: PhD, Department of Mathematics, 1973, Michigan State University

Subjects/Keywords: Algebraic number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Butts, Thomas Randle, 1. (1973). On the genus field and its applications to four problems in algebraic number theory. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:28854

Chicago Manual of Style (16th Edition):

Butts, Thomas Randle, 1943-. “On the genus field and its applications to four problems in algebraic number theory.” 1973. Doctoral Dissertation, Michigan State University. Accessed January 20, 2020. http://etd.lib.msu.edu/islandora/object/etd:28854.

MLA Handbook (7th Edition):

Butts, Thomas Randle, 1943-. “On the genus field and its applications to four problems in algebraic number theory.” 1973. Web. 20 Jan 2020.

Vancouver:

Butts, Thomas Randle 1. On the genus field and its applications to four problems in algebraic number theory. [Internet] [Doctoral dissertation]. Michigan State University; 1973. [cited 2020 Jan 20]. Available from: http://etd.lib.msu.edu/islandora/object/etd:28854.

Council of Science Editors:

Butts, Thomas Randle 1. On the genus field and its applications to four problems in algebraic number theory. [Doctoral Dissertation]. Michigan State University; 1973. Available from: http://etd.lib.msu.edu/islandora/object/etd:28854


Hong Kong University of Science and Technology

8. Chan, Yau Sing. A proof of an assertion of Bombieri.

Degree: 1994, Hong Kong University of Science and Technology

 Following Bombieri [l]'s ideas in his work on the divisibility problem of Tn(x) by Tm(x) (2 ≤ m [less than] n) where Tn(x) = (1… (more)

Subjects/Keywords: Algebraic number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, Y. S. (1994). A proof of an assertion of Bombieri. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-5045 ; https://doi.org/10.14711/thesis-b447483 ; http://repository.ust.hk/ir/bitstream/1783.1-5045/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chan, Yau Sing. “A proof of an assertion of Bombieri.” 1994. Thesis, Hong Kong University of Science and Technology. Accessed January 20, 2020. http://repository.ust.hk/ir/Record/1783.1-5045 ; https://doi.org/10.14711/thesis-b447483 ; http://repository.ust.hk/ir/bitstream/1783.1-5045/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chan, Yau Sing. “A proof of an assertion of Bombieri.” 1994. Web. 20 Jan 2020.

Vancouver:

Chan YS. A proof of an assertion of Bombieri. [Internet] [Thesis]. Hong Kong University of Science and Technology; 1994. [cited 2020 Jan 20]. Available from: http://repository.ust.hk/ir/Record/1783.1-5045 ; https://doi.org/10.14711/thesis-b447483 ; http://repository.ust.hk/ir/bitstream/1783.1-5045/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chan YS. A proof of an assertion of Bombieri. [Thesis]. Hong Kong University of Science and Technology; 1994. Available from: http://repository.ust.hk/ir/Record/1783.1-5045 ; https://doi.org/10.14711/thesis-b447483 ; http://repository.ust.hk/ir/bitstream/1783.1-5045/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

9. Riveros Pacheco, David Ricardo. ON THE GALOIS STRUCTURE OF THE S-UNITS FOR CYCLOTOMIC EXTENSIONS OVER Q.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2015, University of Alberta

 For K/k a finite Galois extension of number fields with G=Gal(K/k) and S a finite G-stable set of primes of K which is "large", Gruenberg… (more)

Subjects/Keywords: Cohomology; Algebraic number theory; Number theory; Envelopes; invariant maps; S-units

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Riveros Pacheco, D. R. (2015). ON THE GALOIS STRUCTURE OF THE S-UNITS FOR CYCLOTOMIC EXTENSIONS OVER Q. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/3f462832h

Chicago Manual of Style (16th Edition):

Riveros Pacheco, David Ricardo. “ON THE GALOIS STRUCTURE OF THE S-UNITS FOR CYCLOTOMIC EXTENSIONS OVER Q.” 2015. Doctoral Dissertation, University of Alberta. Accessed January 20, 2020. https://era.library.ualberta.ca/files/3f462832h.

MLA Handbook (7th Edition):

Riveros Pacheco, David Ricardo. “ON THE GALOIS STRUCTURE OF THE S-UNITS FOR CYCLOTOMIC EXTENSIONS OVER Q.” 2015. Web. 20 Jan 2020.

Vancouver:

Riveros Pacheco DR. ON THE GALOIS STRUCTURE OF THE S-UNITS FOR CYCLOTOMIC EXTENSIONS OVER Q. [Internet] [Doctoral dissertation]. University of Alberta; 2015. [cited 2020 Jan 20]. Available from: https://era.library.ualberta.ca/files/3f462832h.

Council of Science Editors:

Riveros Pacheco DR. ON THE GALOIS STRUCTURE OF THE S-UNITS FOR CYCLOTOMIC EXTENSIONS OVER Q. [Doctoral Dissertation]. University of Alberta; 2015. Available from: https://era.library.ualberta.ca/files/3f462832h


Rice University

10. Johnson, Alexis Katherine. Brauer groups of Kummer surfaces arising from elliptic curves with complex multiplication.

Degree: PhD, Natural Sciences, 2019, Rice University

 The Brauer group of a variety often captures arithmetic information about the space. In this thesis, we study the Brauer group of a special kind… (more)

Subjects/Keywords: Brauer groups; K3 surfaces; elliptic curves; algebraic number theory; algebraic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Johnson, A. K. (2019). Brauer groups of Kummer surfaces arising from elliptic curves with complex multiplication. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/105424

Chicago Manual of Style (16th Edition):

Johnson, Alexis Katherine. “Brauer groups of Kummer surfaces arising from elliptic curves with complex multiplication.” 2019. Doctoral Dissertation, Rice University. Accessed January 20, 2020. http://hdl.handle.net/1911/105424.

MLA Handbook (7th Edition):

Johnson, Alexis Katherine. “Brauer groups of Kummer surfaces arising from elliptic curves with complex multiplication.” 2019. Web. 20 Jan 2020.

Vancouver:

Johnson AK. Brauer groups of Kummer surfaces arising from elliptic curves with complex multiplication. [Internet] [Doctoral dissertation]. Rice University; 2019. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/1911/105424.

Council of Science Editors:

Johnson AK. Brauer groups of Kummer surfaces arising from elliptic curves with complex multiplication. [Doctoral Dissertation]. Rice University; 2019. Available from: http://hdl.handle.net/1911/105424


University of Oxford

11. Vonk, Jan Bert. The Atkin operator on spaces of overconvergent modular forms and arithmetic applications.

Degree: PhD, 2015, University of Oxford

 We investigate the action of the Atkin operator on spaces of overconvergent p-adic modular forms. Our contributions are both computational and geometric. We present several… (more)

Subjects/Keywords: 515; Algebraic geometry; Number theory; Modular forms; Hecke operators; p-adic geometry; computational number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vonk, J. B. (2015). The Atkin operator on spaces of overconvergent modular forms and arithmetic applications. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:081e4e46-80c1-41e7-9154-3181ccb36313 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655130

Chicago Manual of Style (16th Edition):

Vonk, Jan Bert. “The Atkin operator on spaces of overconvergent modular forms and arithmetic applications.” 2015. Doctoral Dissertation, University of Oxford. Accessed January 20, 2020. http://ora.ox.ac.uk/objects/uuid:081e4e46-80c1-41e7-9154-3181ccb36313 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655130.

MLA Handbook (7th Edition):

Vonk, Jan Bert. “The Atkin operator on spaces of overconvergent modular forms and arithmetic applications.” 2015. Web. 20 Jan 2020.

Vancouver:

Vonk JB. The Atkin operator on spaces of overconvergent modular forms and arithmetic applications. [Internet] [Doctoral dissertation]. University of Oxford; 2015. [cited 2020 Jan 20]. Available from: http://ora.ox.ac.uk/objects/uuid:081e4e46-80c1-41e7-9154-3181ccb36313 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655130.

Council of Science Editors:

Vonk JB. The Atkin operator on spaces of overconvergent modular forms and arithmetic applications. [Doctoral Dissertation]. University of Oxford; 2015. Available from: http://ora.ox.ac.uk/objects/uuid:081e4e46-80c1-41e7-9154-3181ccb36313 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655130


Brigham Young University

12. Dang, Vinh Xuan. Three-Dimensional Galois Representations and a Conjecture of Ash, Doud, and Pollack.

Degree: MS, 2011, Brigham Young University

 In the 1970s and 1980s, Jean-Pierre Serre formulated a conjecture connecting two-dimensional Galois representations and modular forms. The conjecture came to be known as Serre's… (more)

Subjects/Keywords: Algebraic Number Theory; Representation Theory; Serre's Conjecture; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dang, V. X. (2011). Three-Dimensional Galois Representations and a Conjecture of Ash, Doud, and Pollack. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3696&context=etd

Chicago Manual of Style (16th Edition):

Dang, Vinh Xuan. “Three-Dimensional Galois Representations and a Conjecture of Ash, Doud, and Pollack.” 2011. Masters Thesis, Brigham Young University. Accessed January 20, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3696&context=etd.

MLA Handbook (7th Edition):

Dang, Vinh Xuan. “Three-Dimensional Galois Representations and a Conjecture of Ash, Doud, and Pollack.” 2011. Web. 20 Jan 2020.

Vancouver:

Dang VX. Three-Dimensional Galois Representations and a Conjecture of Ash, Doud, and Pollack. [Internet] [Masters thesis]. Brigham Young University; 2011. [cited 2020 Jan 20]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3696&context=etd.

Council of Science Editors:

Dang VX. Three-Dimensional Galois Representations and a Conjecture of Ash, Doud, and Pollack. [Masters Thesis]. Brigham Young University; 2011. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3696&context=etd


Florida Atlantic University

13. Bulj, Djordje. A study of divisors and algebras on a double cover of the affine plane.

Degree: PhD, 2012, Florida Atlantic University

Summary: An algebraic surface defined by an equation of the form z2 = (x+a1y) ... (x + any) (x - 1) is studied, from both… (more)

Subjects/Keywords: Algebraic number theory; Geometry – Data processing; Noncommutative differential geometry; Mathematical physics; Curves, Algebraic; Commutative rings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bulj, D. (2012). A study of divisors and algebras on a double cover of the affine plane. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/FAU/3355618

Chicago Manual of Style (16th Edition):

Bulj, Djordje. “A study of divisors and algebras on a double cover of the affine plane.” 2012. Doctoral Dissertation, Florida Atlantic University. Accessed January 20, 2020. http://purl.flvc.org/FAU/3355618.

MLA Handbook (7th Edition):

Bulj, Djordje. “A study of divisors and algebras on a double cover of the affine plane.” 2012. Web. 20 Jan 2020.

Vancouver:

Bulj D. A study of divisors and algebras on a double cover of the affine plane. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2012. [cited 2020 Jan 20]. Available from: http://purl.flvc.org/FAU/3355618.

Council of Science Editors:

Bulj D. A study of divisors and algebras on a double cover of the affine plane. [Doctoral Dissertation]. Florida Atlantic University; 2012. Available from: http://purl.flvc.org/FAU/3355618

14. Rollick, Nickolas. Approximation Constants for Closed Subschemes of Projective Varieties.

Degree: 2019, University of Waterloo

 Diophantine approximation is a branch of number theory with a long history, going back at least to the work of Dirichlet and Liouville in the… (more)

Subjects/Keywords: algebraic geometry; algebraic number theory

number. In 1844, Liouville showed that if x is algebraic of degree d ≥ 2 over Q, then τx ≤ d… …For every irrational algebraic number x and every δ > 0, there are finitely many rational… …algebraic number x as the point (x : 1) ∈ P1 (Q), and the rational… …closeness of the approximation and the “complexity” of the rational number used to make the… …approximation. In this case, the complexity of a rational number is captured by the size of its… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rollick, N. (2019). Approximation Constants for Closed Subschemes of Projective Varieties. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/14764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rollick, Nickolas. “Approximation Constants for Closed Subschemes of Projective Varieties.” 2019. Thesis, University of Waterloo. Accessed January 20, 2020. http://hdl.handle.net/10012/14764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rollick, Nickolas. “Approximation Constants for Closed Subschemes of Projective Varieties.” 2019. Web. 20 Jan 2020.

Vancouver:

Rollick N. Approximation Constants for Closed Subschemes of Projective Varieties. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/10012/14764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rollick N. Approximation Constants for Closed Subschemes of Projective Varieties. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/14764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

15. Haydon, James Henri. Étale homotopy sections of algebraic varieties.

Degree: PhD, 2014, University of Oxford

 We define and study the fundamental pro-finite 2-groupoid of varieties X defined over a field k. This is a higher algebraic invariant of a scheme… (more)

Subjects/Keywords: 514; Algebraic geometry; Algebraic topology; Group theory and generalizations (mathematics); Number theory; higher-category theory; homotopy theory; arithmetic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haydon, J. H. (2014). Étale homotopy sections of algebraic varieties. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618471

Chicago Manual of Style (16th Edition):

Haydon, James Henri. “Étale homotopy sections of algebraic varieties.” 2014. Doctoral Dissertation, University of Oxford. Accessed January 20, 2020. http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618471.

MLA Handbook (7th Edition):

Haydon, James Henri. “Étale homotopy sections of algebraic varieties.” 2014. Web. 20 Jan 2020.

Vancouver:

Haydon JH. Étale homotopy sections of algebraic varieties. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2020 Jan 20]. Available from: http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618471.

Council of Science Editors:

Haydon JH. Étale homotopy sections of algebraic varieties. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618471


McGill University

16. Rideout, Donald E. (Donald Eric). On a generalization of a theorem of Stickelberger.

Degree: PhD, Department of Mathematics., 1970, McGill University

Subjects/Keywords: Algebraic fields.; Number theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rideout, D. E. (. E. (1970). On a generalization of a theorem of Stickelberger. (Doctoral Dissertation). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile67721.pdf

Chicago Manual of Style (16th Edition):

Rideout, Donald E (Donald Eric). “On a generalization of a theorem of Stickelberger.” 1970. Doctoral Dissertation, McGill University. Accessed January 20, 2020. http://digitool.library.mcgill.ca/thesisfile67721.pdf.

MLA Handbook (7th Edition):

Rideout, Donald E (Donald Eric). “On a generalization of a theorem of Stickelberger.” 1970. Web. 20 Jan 2020.

Vancouver:

Rideout DE(E. On a generalization of a theorem of Stickelberger. [Internet] [Doctoral dissertation]. McGill University; 1970. [cited 2020 Jan 20]. Available from: http://digitool.library.mcgill.ca/thesisfile67721.pdf.

Council of Science Editors:

Rideout DE(E. On a generalization of a theorem of Stickelberger. [Doctoral Dissertation]. McGill University; 1970. Available from: http://digitool.library.mcgill.ca/thesisfile67721.pdf


Colorado State University

17. Freese, Hilary. Abelian surfaces with real multiplication over finite fields.

Degree: PhD, Mathematics, 2007, Colorado State University

 Given a simple abelian surface A/Fq, the endomorphism algebra, End(A) ⊗ Q, contains a unique real quadratic subfield. We explore two different but related questions… (more)

Subjects/Keywords: algebraic geometry; number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Freese, H. (2007). Abelian surfaces with real multiplication over finite fields. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/83742

Chicago Manual of Style (16th Edition):

Freese, Hilary. “Abelian surfaces with real multiplication over finite fields.” 2007. Doctoral Dissertation, Colorado State University. Accessed January 20, 2020. http://hdl.handle.net/10217/83742.

MLA Handbook (7th Edition):

Freese, Hilary. “Abelian surfaces with real multiplication over finite fields.” 2007. Web. 20 Jan 2020.

Vancouver:

Freese H. Abelian surfaces with real multiplication over finite fields. [Internet] [Doctoral dissertation]. Colorado State University; 2007. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/10217/83742.

Council of Science Editors:

Freese H. Abelian surfaces with real multiplication over finite fields. [Doctoral Dissertation]. Colorado State University; 2007. Available from: http://hdl.handle.net/10217/83742


California State University – San Bernardino

18. Munoz, Susana L. A Fundamental Unit of O_K.

Degree: MAin Mathematics, Mathematics, 2015, California State University – San Bernardino

  In the classical case we make use of Pells equation to compute units in the ring OF. Consider the parallel to the classical… (more)

Subjects/Keywords: Unit; Algebraic Extensions; Pells equation; continued fractions; Algebra; Number Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Munoz, S. L. (2015). A Fundamental Unit of O_K. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/133

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Munoz, Susana L. “A Fundamental Unit of O_K.” 2015. Thesis, California State University – San Bernardino. Accessed January 20, 2020. https://scholarworks.lib.csusb.edu/etd/133.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Munoz, Susana L. “A Fundamental Unit of O_K.” 2015. Web. 20 Jan 2020.

Vancouver:

Munoz SL. A Fundamental Unit of O_K. [Internet] [Thesis]. California State University – San Bernardino; 2015. [cited 2020 Jan 20]. Available from: https://scholarworks.lib.csusb.edu/etd/133.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Munoz SL. A Fundamental Unit of O_K. [Thesis]. California State University – San Bernardino; 2015. Available from: https://scholarworks.lib.csusb.edu/etd/133

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

19. Shnidman, Ariel. Heights of Generalized Heegner Cycles.

Degree: PhD, Mathematics, 2015, University of Michigan

 We relate the derivative of a p-adic Rankin-Selberg L-function to p-adic heights of the generalized Heegner cycles introduced by Bertolini, Darmon, and Prasanna. This generalizes… (more)

Subjects/Keywords: algebraic cycles; L-functions; arithmetic geometry; number theory; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shnidman, A. (2015). Heights of Generalized Heegner Cycles. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/113442

Chicago Manual of Style (16th Edition):

Shnidman, Ariel. “Heights of Generalized Heegner Cycles.” 2015. Doctoral Dissertation, University of Michigan. Accessed January 20, 2020. http://hdl.handle.net/2027.42/113442.

MLA Handbook (7th Edition):

Shnidman, Ariel. “Heights of Generalized Heegner Cycles.” 2015. Web. 20 Jan 2020.

Vancouver:

Shnidman A. Heights of Generalized Heegner Cycles. [Internet] [Doctoral dissertation]. University of Michigan; 2015. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/2027.42/113442.

Council of Science Editors:

Shnidman A. Heights of Generalized Heegner Cycles. [Doctoral Dissertation]. University of Michigan; 2015. Available from: http://hdl.handle.net/2027.42/113442


Queens University

20. Chou, Kuo Ming James. Constructing pairing-friendly algebraic curves of genus 2 curves with small rho-value .

Degree: Mathematics and Statistics, 2011, Queens University

 For pairing-based cryptographic protocols to be both efficient and secure, the underlying genus 2 curves defined over finite fields used must satisfy pairing-friendly conditions, and… (more)

Subjects/Keywords: Pairing-Friendly Genus 2 Curves; Algebraic Geometry; Cryptography; Number Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chou, K. M. J. (2011). Constructing pairing-friendly algebraic curves of genus 2 curves with small rho-value . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/6866

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chou, Kuo Ming James. “Constructing pairing-friendly algebraic curves of genus 2 curves with small rho-value .” 2011. Thesis, Queens University. Accessed January 20, 2020. http://hdl.handle.net/1974/6866.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chou, Kuo Ming James. “Constructing pairing-friendly algebraic curves of genus 2 curves with small rho-value .” 2011. Web. 20 Jan 2020.

Vancouver:

Chou KMJ. Constructing pairing-friendly algebraic curves of genus 2 curves with small rho-value . [Internet] [Thesis]. Queens University; 2011. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/1974/6866.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chou KMJ. Constructing pairing-friendly algebraic curves of genus 2 curves with small rho-value . [Thesis]. Queens University; 2011. Available from: http://hdl.handle.net/1974/6866

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

21. Hughes, Adam Miles. Multiplicative and dynamical analysis on idèles and idèle class groups.

Degree: PhD, Mathematics, 2016, University of Texas – Austin

 We prove an extension of a result due to Allcock and Vaaler from 2009. In the main theorem we show that an idèle group associated… (more)

Subjects/Keywords: Banach; Algebra; Number theory; Idèle; Mutliplicative; Diophantine; Approximation; Algebraic; Dynamical; Analytic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hughes, A. M. (2016). Multiplicative and dynamical analysis on idèles and idèle class groups. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/40316

Chicago Manual of Style (16th Edition):

Hughes, Adam Miles. “Multiplicative and dynamical analysis on idèles and idèle class groups.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed January 20, 2020. http://hdl.handle.net/2152/40316.

MLA Handbook (7th Edition):

Hughes, Adam Miles. “Multiplicative and dynamical analysis on idèles and idèle class groups.” 2016. Web. 20 Jan 2020.

Vancouver:

Hughes AM. Multiplicative and dynamical analysis on idèles and idèle class groups. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/2152/40316.

Council of Science Editors:

Hughes AM. Multiplicative and dynamical analysis on idèles and idèle class groups. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/40316


Michigan State University

22. Parry, Charles John. On a problem of Schinzel concerning principal divisions in arithmetic progressions.

Degree: PhD, Department of Mathematics, 1970, Michigan State University

Subjects/Keywords: Algebraic number theory; Series, Arithmetic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Parry, C. J. (1970). On a problem of Schinzel concerning principal divisions in arithmetic progressions. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:18980

Chicago Manual of Style (16th Edition):

Parry, Charles John. “On a problem of Schinzel concerning principal divisions in arithmetic progressions.” 1970. Doctoral Dissertation, Michigan State University. Accessed January 20, 2020. http://etd.lib.msu.edu/islandora/object/etd:18980.

MLA Handbook (7th Edition):

Parry, Charles John. “On a problem of Schinzel concerning principal divisions in arithmetic progressions.” 1970. Web. 20 Jan 2020.

Vancouver:

Parry CJ. On a problem of Schinzel concerning principal divisions in arithmetic progressions. [Internet] [Doctoral dissertation]. Michigan State University; 1970. [cited 2020 Jan 20]. Available from: http://etd.lib.msu.edu/islandora/object/etd:18980.

Council of Science Editors:

Parry CJ. On a problem of Schinzel concerning principal divisions in arithmetic progressions. [Doctoral Dissertation]. Michigan State University; 1970. Available from: http://etd.lib.msu.edu/islandora/object/etd:18980


Princeton University

23. Sengupta, Akash Kumar. Geometric invariants and Geometric consistency of Manin’s conjecture .

Degree: PhD, 2019, Princeton University

 Manin’s conjeture states that the asymptotic growth of the number of rational points on a Fano variety over a number field is governed by certain… (more)

Subjects/Keywords: Algebraic Geometry; Manin's conjecture; Minimal Model Program; Number Theory; Rational points

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sengupta, A. K. (2019). Geometric invariants and Geometric consistency of Manin’s conjecture . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01mg74qp98n

Chicago Manual of Style (16th Edition):

Sengupta, Akash Kumar. “Geometric invariants and Geometric consistency of Manin’s conjecture .” 2019. Doctoral Dissertation, Princeton University. Accessed January 20, 2020. http://arks.princeton.edu/ark:/88435/dsp01mg74qp98n.

MLA Handbook (7th Edition):

Sengupta, Akash Kumar. “Geometric invariants and Geometric consistency of Manin’s conjecture .” 2019. Web. 20 Jan 2020.

Vancouver:

Sengupta AK. Geometric invariants and Geometric consistency of Manin’s conjecture . [Internet] [Doctoral dissertation]. Princeton University; 2019. [cited 2020 Jan 20]. Available from: http://arks.princeton.edu/ark:/88435/dsp01mg74qp98n.

Council of Science Editors:

Sengupta AK. Geometric invariants and Geometric consistency of Manin’s conjecture . [Doctoral Dissertation]. Princeton University; 2019. Available from: http://arks.princeton.edu/ark:/88435/dsp01mg74qp98n


George Mason University

24. Schnall, Marla. The Kronecker Weber Theorem and Concepts in Algebraic Number Theory .

Degree: 2014, George Mason University

 The Kronecker-Weber Theorem states that all abelian extensions are sub elds of cy- clotomic elds. This paper considers a proof based on foundational concepts in… (more)

Subjects/Keywords: Kronecker Weber; ramified primes; Algebraic Number Theory; Cyclotomic Extensions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schnall, M. (2014). The Kronecker Weber Theorem and Concepts in Algebraic Number Theory . (Thesis). George Mason University. Retrieved from http://hdl.handle.net/1920/9047

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schnall, Marla. “The Kronecker Weber Theorem and Concepts in Algebraic Number Theory .” 2014. Thesis, George Mason University. Accessed January 20, 2020. http://hdl.handle.net/1920/9047.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schnall, Marla. “The Kronecker Weber Theorem and Concepts in Algebraic Number Theory .” 2014. Web. 20 Jan 2020.

Vancouver:

Schnall M. The Kronecker Weber Theorem and Concepts in Algebraic Number Theory . [Internet] [Thesis]. George Mason University; 2014. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/1920/9047.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schnall M. The Kronecker Weber Theorem and Concepts in Algebraic Number Theory . [Thesis]. George Mason University; 2014. Available from: http://hdl.handle.net/1920/9047

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

25. Dorfsman-Hopkins, Gabriel David. Projective Geometry for Perfectoid Spaces.

Degree: PhD, 2019, University of Washington

 To understand the structure of an algebraic variety we often embed it in various projective spaces. This develops the notion of projective geometry which has… (more)

Subjects/Keywords: Algebraic Geometry; Commutative Algebra; Number Theory; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dorfsman-Hopkins, G. D. (2019). Projective Geometry for Perfectoid Spaces. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/44374

Chicago Manual of Style (16th Edition):

Dorfsman-Hopkins, Gabriel David. “Projective Geometry for Perfectoid Spaces.” 2019. Doctoral Dissertation, University of Washington. Accessed January 20, 2020. http://hdl.handle.net/1773/44374.

MLA Handbook (7th Edition):

Dorfsman-Hopkins, Gabriel David. “Projective Geometry for Perfectoid Spaces.” 2019. Web. 20 Jan 2020.

Vancouver:

Dorfsman-Hopkins GD. Projective Geometry for Perfectoid Spaces. [Internet] [Doctoral dissertation]. University of Washington; 2019. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/1773/44374.

Council of Science Editors:

Dorfsman-Hopkins GD. Projective Geometry for Perfectoid Spaces. [Doctoral Dissertation]. University of Washington; 2019. Available from: http://hdl.handle.net/1773/44374

26. Μπακογιάννης, Χρήστος. Υλοποίηση της μεθόδου παραγοντοποίησης ακεραίων αριθμών number field sieve σε παράλληλο υπολογιστικό περιβάλλον.

Degree: 2010, University of Patras

Η διείσδυση των υπολογιστών, τόσο στα σπίτια μας, όσο και κυρίως στις επιχειρήσεις, κατά τα τελευταία χρόνια, καθώς επίσης και ο συνεχώς αυξανόμενος ρυθμός χρήσης… (more)

Subjects/Keywords: Παραγοντοποίηση ακεραίων; Αλγόριθμος παραγοντοποίησης; Κρυπτογραφία; 003.54; Number field sieve; General number field sieve; Cryptography; Factoring; Algebraic number theory; RSA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Μπακογιάννης, . (2010). Υλοποίηση της μεθόδου παραγοντοποίησης ακεραίων αριθμών number field sieve σε παράλληλο υπολογιστικό περιβάλλον. (Masters Thesis). University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/3734

Chicago Manual of Style (16th Edition):

Μπακογιάννης, Χρήστος. “Υλοποίηση της μεθόδου παραγοντοποίησης ακεραίων αριθμών number field sieve σε παράλληλο υπολογιστικό περιβάλλον.” 2010. Masters Thesis, University of Patras. Accessed January 20, 2020. http://nemertes.lis.upatras.gr/jspui/handle/10889/3734.

MLA Handbook (7th Edition):

Μπακογιάννης, Χρήστος. “Υλοποίηση της μεθόδου παραγοντοποίησης ακεραίων αριθμών number field sieve σε παράλληλο υπολογιστικό περιβάλλον.” 2010. Web. 20 Jan 2020.

Vancouver:

Μπακογιάννης . Υλοποίηση της μεθόδου παραγοντοποίησης ακεραίων αριθμών number field sieve σε παράλληλο υπολογιστικό περιβάλλον. [Internet] [Masters thesis]. University of Patras; 2010. [cited 2020 Jan 20]. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/3734.

Council of Science Editors:

Μπακογιάννης . Υλοποίηση της μεθόδου παραγοντοποίησης ακεραίων αριθμών number field sieve σε παράλληλο υπολογιστικό περιβάλλον. [Masters Thesis]. University of Patras; 2010. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/3734


University of Melbourne

27. McAndrew, Angus William. Galois representations and theta operators for Siegel modular forms.

Degree: 2015, University of Melbourne

 Modular forms are powerful number theoretic objects, having attracted much study and attention for the last 200 years. In the modern area, one of their… (more)

Subjects/Keywords: number theory; representation theory; algebraic geometry; Galois representations; modular forms; Siegel modular forms; Serre's conjecture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McAndrew, A. W. (2015). Galois representations and theta operators for Siegel modular forms. (Masters Thesis). University of Melbourne. Retrieved from http://hdl.handle.net/11343/57014

Chicago Manual of Style (16th Edition):

McAndrew, Angus William. “Galois representations and theta operators for Siegel modular forms.” 2015. Masters Thesis, University of Melbourne. Accessed January 20, 2020. http://hdl.handle.net/11343/57014.

MLA Handbook (7th Edition):

McAndrew, Angus William. “Galois representations and theta operators for Siegel modular forms.” 2015. Web. 20 Jan 2020.

Vancouver:

McAndrew AW. Galois representations and theta operators for Siegel modular forms. [Internet] [Masters thesis]. University of Melbourne; 2015. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/11343/57014.

Council of Science Editors:

McAndrew AW. Galois representations and theta operators for Siegel modular forms. [Masters Thesis]. University of Melbourne; 2015. Available from: http://hdl.handle.net/11343/57014


Princeton University

28. Collins, Dan Jack. Anticyclotomic p-adic L-functions and Ichino's formula .

Degree: PhD, 2015, Princeton University

 We investigate the anticyclotomic p-adic L-function that interpolates the central value of the Rankin-Selberg L-function L(f¿¿,s), where f is a fixed classical modular form and… (more)

Subjects/Keywords: algebraic number theory; Hida theory; p-adic L-function; triple product L-function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Collins, D. J. (2015). Anticyclotomic p-adic L-functions and Ichino's formula . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01qj72p952b

Chicago Manual of Style (16th Edition):

Collins, Dan Jack. “Anticyclotomic p-adic L-functions and Ichino's formula .” 2015. Doctoral Dissertation, Princeton University. Accessed January 20, 2020. http://arks.princeton.edu/ark:/88435/dsp01qj72p952b.

MLA Handbook (7th Edition):

Collins, Dan Jack. “Anticyclotomic p-adic L-functions and Ichino's formula .” 2015. Web. 20 Jan 2020.

Vancouver:

Collins DJ. Anticyclotomic p-adic L-functions and Ichino's formula . [Internet] [Doctoral dissertation]. Princeton University; 2015. [cited 2020 Jan 20]. Available from: http://arks.princeton.edu/ark:/88435/dsp01qj72p952b.

Council of Science Editors:

Collins DJ. Anticyclotomic p-adic L-functions and Ichino's formula . [Doctoral Dissertation]. Princeton University; 2015. Available from: http://arks.princeton.edu/ark:/88435/dsp01qj72p952b


Michigan State University

29. Theusch, Colleen Joan, 1932-. Determination of the Hilbert Class Field for certain algebraic number fields.

Degree: PhD, Department of Mathematics, 1971, Michigan State University

Subjects/Keywords: Algebraic number theory; Class field theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Theusch, Colleen Joan, 1. (1971). Determination of the Hilbert Class Field for certain algebraic number fields. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:37021

Chicago Manual of Style (16th Edition):

Theusch, Colleen Joan, 1932-. “Determination of the Hilbert Class Field for certain algebraic number fields.” 1971. Doctoral Dissertation, Michigan State University. Accessed January 20, 2020. http://etd.lib.msu.edu/islandora/object/etd:37021.

MLA Handbook (7th Edition):

Theusch, Colleen Joan, 1932-. “Determination of the Hilbert Class Field for certain algebraic number fields.” 1971. Web. 20 Jan 2020.

Vancouver:

Theusch, Colleen Joan 1. Determination of the Hilbert Class Field for certain algebraic number fields. [Internet] [Doctoral dissertation]. Michigan State University; 1971. [cited 2020 Jan 20]. Available from: http://etd.lib.msu.edu/islandora/object/etd:37021.

Council of Science Editors:

Theusch, Colleen Joan 1. Determination of the Hilbert Class Field for certain algebraic number fields. [Doctoral Dissertation]. Michigan State University; 1971. Available from: http://etd.lib.msu.edu/islandora/object/etd:37021


Virginia Tech

30. Gaertner, Nathaniel Allen. Special Cases of Density Theorems in Algebraic Number Theory.

Degree: MS, Mathematics, 2006, Virginia Tech

 This paper discusses the concepts in algebraic and analytic number theory used in the proofs of Dirichlet's and Cheboterev's density theorems. It presents special cases… (more)

Subjects/Keywords: Cheboterev; Dirichlet; Density; Number Theory; Algebraic Number Theory; Frobenius

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gaertner, N. A. (2006). Special Cases of Density Theorems in Algebraic Number Theory. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/33153

Chicago Manual of Style (16th Edition):

Gaertner, Nathaniel Allen. “Special Cases of Density Theorems in Algebraic Number Theory.” 2006. Masters Thesis, Virginia Tech. Accessed January 20, 2020. http://hdl.handle.net/10919/33153.

MLA Handbook (7th Edition):

Gaertner, Nathaniel Allen. “Special Cases of Density Theorems in Algebraic Number Theory.” 2006. Web. 20 Jan 2020.

Vancouver:

Gaertner NA. Special Cases of Density Theorems in Algebraic Number Theory. [Internet] [Masters thesis]. Virginia Tech; 2006. [cited 2020 Jan 20]. Available from: http://hdl.handle.net/10919/33153.

Council of Science Editors:

Gaertner NA. Special Cases of Density Theorems in Algebraic Number Theory. [Masters Thesis]. Virginia Tech; 2006. Available from: http://hdl.handle.net/10919/33153

[1] [2] [3] [4]

.