Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Algebraic Topology). Showing records 1 – 30 of 261 total matches.

[1] [2] [3] [4] [5] [6] [7] [8] [9]

Search Limiters

Last 2 Years | English Only

Universities

Levels

Languages

Country

▼ Search Limiters


University of Melbourne

1. Spong, Matthew James. Comparison theorems for torus-equivariant elliptic cohomology theories.

Degree: 2019, University of Melbourne

 In 1994, Grojnowski gave a construction of an equivariant elliptic cohomology theory associated to an elliptic curve over the complex numbers. Grojnowski’s construction has seen… (more)

Subjects/Keywords: Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Spong, M. J. (2019). Comparison theorems for torus-equivariant elliptic cohomology theories. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/225560

Chicago Manual of Style (16th Edition):

Spong, Matthew James. “Comparison theorems for torus-equivariant elliptic cohomology theories.” 2019. Doctoral Dissertation, University of Melbourne. Accessed September 20, 2020. http://hdl.handle.net/11343/225560.

MLA Handbook (7th Edition):

Spong, Matthew James. “Comparison theorems for torus-equivariant elliptic cohomology theories.” 2019. Web. 20 Sep 2020.

Vancouver:

Spong MJ. Comparison theorems for torus-equivariant elliptic cohomology theories. [Internet] [Doctoral dissertation]. University of Melbourne; 2019. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/11343/225560.

Council of Science Editors:

Spong MJ. Comparison theorems for torus-equivariant elliptic cohomology theories. [Doctoral Dissertation]. University of Melbourne; 2019. Available from: http://hdl.handle.net/11343/225560


Rutgers University

2. Bush, Justin. Shift equivalence and a combinatorial-topological approach to discrete-time dynamical systems.

Degree: PhD, Mathematics, 2015, Rutgers University

Given a parameterized family of discrete-time dynamical systems, we aim to investigate how the global dynamics depends on the parameters in a way that is… (more)

Subjects/Keywords: Dynamics; Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bush, J. (2015). Shift equivalence and a combinatorial-topological approach to discrete-time dynamical systems. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/46313/

Chicago Manual of Style (16th Edition):

Bush, Justin. “Shift equivalence and a combinatorial-topological approach to discrete-time dynamical systems.” 2015. Doctoral Dissertation, Rutgers University. Accessed September 20, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/46313/.

MLA Handbook (7th Edition):

Bush, Justin. “Shift equivalence and a combinatorial-topological approach to discrete-time dynamical systems.” 2015. Web. 20 Sep 2020.

Vancouver:

Bush J. Shift equivalence and a combinatorial-topological approach to discrete-time dynamical systems. [Internet] [Doctoral dissertation]. Rutgers University; 2015. [cited 2020 Sep 20]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/46313/.

Council of Science Editors:

Bush J. Shift equivalence and a combinatorial-topological approach to discrete-time dynamical systems. [Doctoral Dissertation]. Rutgers University; 2015. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/46313/


Oregon State University

3. Gerlach, Siegfried. Application of algebraic topology to graphs and networks.

Degree: MS, Mathematics, 1979, Oregon State University

 In this thesis some applications of algebraic topology are given. Kirchhoff's circuit laws are translated into the language of algebraic topology: If G is the… (more)

Subjects/Keywords: Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gerlach, S. (1979). Application of algebraic topology to graphs and networks. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/42847

Chicago Manual of Style (16th Edition):

Gerlach, Siegfried. “Application of algebraic topology to graphs and networks.” 1979. Masters Thesis, Oregon State University. Accessed September 20, 2020. http://hdl.handle.net/1957/42847.

MLA Handbook (7th Edition):

Gerlach, Siegfried. “Application of algebraic topology to graphs and networks.” 1979. Web. 20 Sep 2020.

Vancouver:

Gerlach S. Application of algebraic topology to graphs and networks. [Internet] [Masters thesis]. Oregon State University; 1979. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/1957/42847.

Council of Science Editors:

Gerlach S. Application of algebraic topology to graphs and networks. [Masters Thesis]. Oregon State University; 1979. Available from: http://hdl.handle.net/1957/42847

4. Martin, Joshua M. Multiradial (multi)filtrations and persistent homology.

Degree: 2016, NC Docks

 Motivated by the problem of optimizing sensor network covers, we generalize the persistent homology of simplicial complexes over a single radial parameter to the context… (more)

Subjects/Keywords: Homology theory; Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martin, J. M. (2016). Multiradial (multi)filtrations and persistent homology. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Martin_uncg_0154M_12055.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Martin, Joshua M. “Multiradial (multi)filtrations and persistent homology.” 2016. Thesis, NC Docks. Accessed September 20, 2020. http://libres.uncg.edu/ir/uncg/f/Martin_uncg_0154M_12055.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Martin, Joshua M. “Multiradial (multi)filtrations and persistent homology.” 2016. Web. 20 Sep 2020.

Vancouver:

Martin JM. Multiradial (multi)filtrations and persistent homology. [Internet] [Thesis]. NC Docks; 2016. [cited 2020 Sep 20]. Available from: http://libres.uncg.edu/ir/uncg/f/Martin_uncg_0154M_12055.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Martin JM. Multiradial (multi)filtrations and persistent homology. [Thesis]. NC Docks; 2016. Available from: http://libres.uncg.edu/ir/uncg/f/Martin_uncg_0154M_12055.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of British Columbia

5. Lê, Anh-Chi’. Hurewicz homomorphisms .

Degree: 1974, University of British Columbia

 Theorem : Let X be simply connected . H[sub q](X) be finitely generated for each q. π[sub q](X) be finite for each q < n.… (more)

Subjects/Keywords: Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lê, A. (1974). Hurewicz homomorphisms . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/18814

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lê, Anh-Chi’. “Hurewicz homomorphisms .” 1974. Thesis, University of British Columbia. Accessed September 20, 2020. http://hdl.handle.net/2429/18814.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lê, Anh-Chi’. “Hurewicz homomorphisms .” 1974. Web. 20 Sep 2020.

Vancouver:

Lê A. Hurewicz homomorphisms . [Internet] [Thesis]. University of British Columbia; 1974. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2429/18814.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lê A. Hurewicz homomorphisms . [Thesis]. University of British Columbia; 1974. Available from: http://hdl.handle.net/2429/18814

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of North Carolina – Greensboro

6. Martin, Joshua M. Multiradial (multi)filtrations and persistent homology.

Degree: 2016, University of North Carolina – Greensboro

 Motivated by the problem of optimizing sensor network covers, we generalize the persistent homology of simplicial complexes over a single radial parameter to the context… (more)

Subjects/Keywords: Homology theory; Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martin, J. M. (2016). Multiradial (multi)filtrations and persistent homology. (Masters Thesis). University of North Carolina – Greensboro. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21002

Chicago Manual of Style (16th Edition):

Martin, Joshua M. “Multiradial (multi)filtrations and persistent homology.” 2016. Masters Thesis, University of North Carolina – Greensboro. Accessed September 20, 2020. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21002.

MLA Handbook (7th Edition):

Martin, Joshua M. “Multiradial (multi)filtrations and persistent homology.” 2016. Web. 20 Sep 2020.

Vancouver:

Martin JM. Multiradial (multi)filtrations and persistent homology. [Internet] [Masters thesis]. University of North Carolina – Greensboro; 2016. [cited 2020 Sep 20]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21002.

Council of Science Editors:

Martin JM. Multiradial (multi)filtrations and persistent homology. [Masters Thesis]. University of North Carolina – Greensboro; 2016. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21002

7. Holstein, Julian Victor Sebastian. Morita cohomology.

Degree: PhD, 2014, University of Cambridge

 This work constructs and compares different kinds of categorified cohomology of a locally contractible topological space X. Fix a commutative ring k of characteristic 0… (more)

Subjects/Keywords: Algebraic topology; Category theory

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Holstein, J. V. S. (2014). Morita cohomology. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/245136https://www.repository.cam.ac.uk/bitstream/1810/245136/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/245136/3/license_rdf ; https://www.repository.cam.ac.uk/bitstream/1810/245136/6/Morita%20Cohomology.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/245136/7/Morita%20Cohomology.pdf.jpg

Chicago Manual of Style (16th Edition):

Holstein, Julian Victor Sebastian. “Morita cohomology.” 2014. Doctoral Dissertation, University of Cambridge. Accessed September 20, 2020. https://www.repository.cam.ac.uk/handle/1810/245136https://www.repository.cam.ac.uk/bitstream/1810/245136/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/245136/3/license_rdf ; https://www.repository.cam.ac.uk/bitstream/1810/245136/6/Morita%20Cohomology.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/245136/7/Morita%20Cohomology.pdf.jpg.

MLA Handbook (7th Edition):

Holstein, Julian Victor Sebastian. “Morita cohomology.” 2014. Web. 20 Sep 2020.

Vancouver:

Holstein JVS. Morita cohomology. [Internet] [Doctoral dissertation]. University of Cambridge; 2014. [cited 2020 Sep 20]. Available from: https://www.repository.cam.ac.uk/handle/1810/245136https://www.repository.cam.ac.uk/bitstream/1810/245136/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/245136/3/license_rdf ; https://www.repository.cam.ac.uk/bitstream/1810/245136/6/Morita%20Cohomology.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/245136/7/Morita%20Cohomology.pdf.jpg.

Council of Science Editors:

Holstein JVS. Morita cohomology. [Doctoral Dissertation]. University of Cambridge; 2014. Available from: https://www.repository.cam.ac.uk/handle/1810/245136https://www.repository.cam.ac.uk/bitstream/1810/245136/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/245136/3/license_rdf ; https://www.repository.cam.ac.uk/bitstream/1810/245136/6/Morita%20Cohomology.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/245136/7/Morita%20Cohomology.pdf.jpg


Michigan State University

8. Spence, Lawrence Edward, 1946-. Images of certain manifolds under mappings of degree one.

Degree: PhD, Department of Mathematics, 1970, Michigan State University

Subjects/Keywords: Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Spence, Lawrence Edward, 1. (1970). Images of certain manifolds under mappings of degree one. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:38525

Chicago Manual of Style (16th Edition):

Spence, Lawrence Edward, 1946-. “Images of certain manifolds under mappings of degree one.” 1970. Doctoral Dissertation, Michigan State University. Accessed September 20, 2020. http://etd.lib.msu.edu/islandora/object/etd:38525.

MLA Handbook (7th Edition):

Spence, Lawrence Edward, 1946-. “Images of certain manifolds under mappings of degree one.” 1970. Web. 20 Sep 2020.

Vancouver:

Spence, Lawrence Edward 1. Images of certain manifolds under mappings of degree one. [Internet] [Doctoral dissertation]. Michigan State University; 1970. [cited 2020 Sep 20]. Available from: http://etd.lib.msu.edu/islandora/object/etd:38525.

Council of Science Editors:

Spence, Lawrence Edward 1. Images of certain manifolds under mappings of degree one. [Doctoral Dissertation]. Michigan State University; 1970. Available from: http://etd.lib.msu.edu/islandora/object/etd:38525


University of Oregon

9. Merrill, Leanne. Periodic Margolis Self Maps at p=2.

Degree: PhD, Department of Mathematics, 2018, University of Oregon

 The Periodicity theorem of Hopkins and Smith tells us that any finite spectrum supports a vn-map for some n. We are interested in finding finite… (more)

Subjects/Keywords: Algebraic topology; Homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Merrill, L. (2018). Periodic Margolis Self Maps at p=2. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/23144

Chicago Manual of Style (16th Edition):

Merrill, Leanne. “Periodic Margolis Self Maps at p=2.” 2018. Doctoral Dissertation, University of Oregon. Accessed September 20, 2020. http://hdl.handle.net/1794/23144.

MLA Handbook (7th Edition):

Merrill, Leanne. “Periodic Margolis Self Maps at p=2.” 2018. Web. 20 Sep 2020.

Vancouver:

Merrill L. Periodic Margolis Self Maps at p=2. [Internet] [Doctoral dissertation]. University of Oregon; 2018. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/1794/23144.

Council of Science Editors:

Merrill L. Periodic Margolis Self Maps at p=2. [Doctoral Dissertation]. University of Oregon; 2018. Available from: http://hdl.handle.net/1794/23144


University of Aberdeen

10. Alghamdi, Mohamed A. M. A. Some problems in algebraic topology.

Degree: Dept. of Mathematics, 1991, University of Aberdeen

Subjects/Keywords: Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alghamdi, M. A. M. A. (1991). Some problems in algebraic topology. (Doctoral Dissertation). University of Aberdeen. Retrieved from http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=166808 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=166808&custom_att_2=simple_viewer

Chicago Manual of Style (16th Edition):

Alghamdi, Mohamed A M A. “Some problems in algebraic topology.” 1991. Doctoral Dissertation, University of Aberdeen. Accessed September 20, 2020. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=166808 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=166808&custom_att_2=simple_viewer.

MLA Handbook (7th Edition):

Alghamdi, Mohamed A M A. “Some problems in algebraic topology.” 1991. Web. 20 Sep 2020.

Vancouver:

Alghamdi MAMA. Some problems in algebraic topology. [Internet] [Doctoral dissertation]. University of Aberdeen; 1991. [cited 2020 Sep 20]. Available from: http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=166808 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=166808&custom_att_2=simple_viewer.

Council of Science Editors:

Alghamdi MAMA. Some problems in algebraic topology. [Doctoral Dissertation]. University of Aberdeen; 1991. Available from: http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=166808 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=166808&custom_att_2=simple_viewer

11. Garcia, Jacob D. Some aspects of generalized covering space theory.

Degree: Thesis (M.S.), 2018, Ball State University

 Covering space theory is a classical tool used to characterize the geometry and topology of real or abstract spaces. It seeks to separate the main… (more)

Subjects/Keywords: Covering spaces (Topology); Transfer (Algebraic topology)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garcia, J. D. (2018). Some aspects of generalized covering space theory. (Masters Thesis). Ball State University. Retrieved from http://cardinalscholar.bsu.edu/handle/123456789/201134

Chicago Manual of Style (16th Edition):

Garcia, Jacob D. “Some aspects of generalized covering space theory.” 2018. Masters Thesis, Ball State University. Accessed September 20, 2020. http://cardinalscholar.bsu.edu/handle/123456789/201134.

MLA Handbook (7th Edition):

Garcia, Jacob D. “Some aspects of generalized covering space theory.” 2018. Web. 20 Sep 2020.

Vancouver:

Garcia JD. Some aspects of generalized covering space theory. [Internet] [Masters thesis]. Ball State University; 2018. [cited 2020 Sep 20]. Available from: http://cardinalscholar.bsu.edu/handle/123456789/201134.

Council of Science Editors:

Garcia JD. Some aspects of generalized covering space theory. [Masters Thesis]. Ball State University; 2018. Available from: http://cardinalscholar.bsu.edu/handle/123456789/201134


University of California – Berkeley

12. Cho, Chang-Yeon. Topological types of Algebraic stacks.

Degree: Mathematics, 2016, University of California – Berkeley

 In developing homotopy theory in algebraic geometry, Michael Artin and Barry Mazur studied the \'etale homotopy types of schemes. Later, Eric Friedlander generalized them to… (more)

Subjects/Keywords: Mathematics; algebraic geometry; algebraic stacks; algebraic topology; \'etale homotopy; homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cho, C. (2016). Topological types of Algebraic stacks. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/1pv4m6nr

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cho, Chang-Yeon. “Topological types of Algebraic stacks.” 2016. Thesis, University of California – Berkeley. Accessed September 20, 2020. http://www.escholarship.org/uc/item/1pv4m6nr.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cho, Chang-Yeon. “Topological types of Algebraic stacks.” 2016. Web. 20 Sep 2020.

Vancouver:

Cho C. Topological types of Algebraic stacks. [Internet] [Thesis]. University of California – Berkeley; 2016. [cited 2020 Sep 20]. Available from: http://www.escholarship.org/uc/item/1pv4m6nr.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cho C. Topological types of Algebraic stacks. [Thesis]. University of California – Berkeley; 2016. Available from: http://www.escholarship.org/uc/item/1pv4m6nr

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

13. Kneezel, Daniel J. Verlinde K-theory.

Degree: PhD, Mathematics, 2011, University of Michigan

 This thesis concerns computations of twisted equivariant K-theory functors evaluated on certain spaces. In the second chapter, for simple, ompact, simply-connected Lie groups G, I… (more)

Subjects/Keywords: Algebraic Topology; Twisted K-theory; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kneezel, D. J. (2011). Verlinde K-theory. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/86341

Chicago Manual of Style (16th Edition):

Kneezel, Daniel J. “Verlinde K-theory.” 2011. Doctoral Dissertation, University of Michigan. Accessed September 20, 2020. http://hdl.handle.net/2027.42/86341.

MLA Handbook (7th Edition):

Kneezel, Daniel J. “Verlinde K-theory.” 2011. Web. 20 Sep 2020.

Vancouver:

Kneezel DJ. Verlinde K-theory. [Internet] [Doctoral dissertation]. University of Michigan; 2011. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2027.42/86341.

Council of Science Editors:

Kneezel DJ. Verlinde K-theory. [Doctoral Dissertation]. University of Michigan; 2011. Available from: http://hdl.handle.net/2027.42/86341


Cornell University

14. Marshall, Andrew. On Configurations Of Spatial Planar Graphs.

Degree: PhD, Mathematics, 2014, Cornell University

 We investigate the homotopy type of a variety of families of configurations of graphs in R3 and S 3 . Preliminary results give that the… (more)

Subjects/Keywords: Configuration Spaces; Topological Graph Theory; Algebraic Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marshall, A. (2014). On Configurations Of Spatial Planar Graphs. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/38748

Chicago Manual of Style (16th Edition):

Marshall, Andrew. “On Configurations Of Spatial Planar Graphs.” 2014. Doctoral Dissertation, Cornell University. Accessed September 20, 2020. http://hdl.handle.net/1813/38748.

MLA Handbook (7th Edition):

Marshall, Andrew. “On Configurations Of Spatial Planar Graphs.” 2014. Web. 20 Sep 2020.

Vancouver:

Marshall A. On Configurations Of Spatial Planar Graphs. [Internet] [Doctoral dissertation]. Cornell University; 2014. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/1813/38748.

Council of Science Editors:

Marshall A. On Configurations Of Spatial Planar Graphs. [Doctoral Dissertation]. Cornell University; 2014. Available from: http://hdl.handle.net/1813/38748


University of Oxford

15. Caru, Giovanni. Logical and topological contextuality in quantum mechanics and beyond.

Degree: PhD, 2019, University of Oxford

 The main subjects of this thesis are non-locality and contextuality, two fundamental features of quantum mechanics that constitute valuable resources for quantum computation. Our analysis… (more)

Subjects/Keywords: Quantum theory; Algebraic topology; Computer science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Caru, G. (2019). Logical and topological contextuality in quantum mechanics and beyond. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:9bc2335a-b627-463b-9526-f4b881b0fbbf ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.791738

Chicago Manual of Style (16th Edition):

Caru, Giovanni. “Logical and topological contextuality in quantum mechanics and beyond.” 2019. Doctoral Dissertation, University of Oxford. Accessed September 20, 2020. http://ora.ox.ac.uk/objects/uuid:9bc2335a-b627-463b-9526-f4b881b0fbbf ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.791738.

MLA Handbook (7th Edition):

Caru, Giovanni. “Logical and topological contextuality in quantum mechanics and beyond.” 2019. Web. 20 Sep 2020.

Vancouver:

Caru G. Logical and topological contextuality in quantum mechanics and beyond. [Internet] [Doctoral dissertation]. University of Oxford; 2019. [cited 2020 Sep 20]. Available from: http://ora.ox.ac.uk/objects/uuid:9bc2335a-b627-463b-9526-f4b881b0fbbf ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.791738.

Council of Science Editors:

Caru G. Logical and topological contextuality in quantum mechanics and beyond. [Doctoral Dissertation]. University of Oxford; 2019. Available from: http://ora.ox.ac.uk/objects/uuid:9bc2335a-b627-463b-9526-f4b881b0fbbf ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.791738

16. Gilbert, Cody. The Golod Property on Monomial Rings.

Degree: 2018, Wake Forest University

 In this paper, we work towards understanding a counterexample found in Lukas Katthan's "A non-Golod Ring with a Trivial Product on its Koszul Homology". In… (more)

Subjects/Keywords: Algebraic Topology

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gilbert, C. (2018). The Golod Property on Monomial Rings. (Thesis). Wake Forest University. Retrieved from http://hdl.handle.net/10339/90719

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gilbert, Cody. “The Golod Property on Monomial Rings.” 2018. Thesis, Wake Forest University. Accessed September 20, 2020. http://hdl.handle.net/10339/90719.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gilbert, Cody. “The Golod Property on Monomial Rings.” 2018. Web. 20 Sep 2020.

Vancouver:

Gilbert C. The Golod Property on Monomial Rings. [Internet] [Thesis]. Wake Forest University; 2018. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10339/90719.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gilbert C. The Golod Property on Monomial Rings. [Thesis]. Wake Forest University; 2018. Available from: http://hdl.handle.net/10339/90719

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Miami

17. Harris, Christopher L. The Index Bundle for a Family of Dirac-Ramond Operators.

Degree: PhD, Mathematics (Arts and Sciences), 2012, University of Miami

 String theoretic considerations imply the existence of a Dirac-like operator, known as the Dirac-Ramond operator, on the free loop space of a closed string manifold.… (more)

Subjects/Keywords: Algebraic Topology; Index Theory; Modular Forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Harris, C. L. (2012). The Index Bundle for a Family of Dirac-Ramond Operators. (Doctoral Dissertation). University of Miami. Retrieved from https://scholarlyrepository.miami.edu/oa_dissertations/730

Chicago Manual of Style (16th Edition):

Harris, Christopher L. “The Index Bundle for a Family of Dirac-Ramond Operators.” 2012. Doctoral Dissertation, University of Miami. Accessed September 20, 2020. https://scholarlyrepository.miami.edu/oa_dissertations/730.

MLA Handbook (7th Edition):

Harris, Christopher L. “The Index Bundle for a Family of Dirac-Ramond Operators.” 2012. Web. 20 Sep 2020.

Vancouver:

Harris CL. The Index Bundle for a Family of Dirac-Ramond Operators. [Internet] [Doctoral dissertation]. University of Miami; 2012. [cited 2020 Sep 20]. Available from: https://scholarlyrepository.miami.edu/oa_dissertations/730.

Council of Science Editors:

Harris CL. The Index Bundle for a Family of Dirac-Ramond Operators. [Doctoral Dissertation]. University of Miami; 2012. Available from: https://scholarlyrepository.miami.edu/oa_dissertations/730


Brigham Young University

18. Larsen, Nicholas Guy. A New Family of Topological Invariants.

Degree: MS, 2018, Brigham Young University

 We define an extension of the nth homotopy group which can distinguish a larger class of spaces. (E.g., a converging sequence of disjoint circles and… (more)

Subjects/Keywords: algebraic topology; homotopy; fundamental group; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Larsen, N. G. (2018). A New Family of Topological Invariants. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd

Chicago Manual of Style (16th Edition):

Larsen, Nicholas Guy. “A New Family of Topological Invariants.” 2018. Masters Thesis, Brigham Young University. Accessed September 20, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd.

MLA Handbook (7th Edition):

Larsen, Nicholas Guy. “A New Family of Topological Invariants.” 2018. Web. 20 Sep 2020.

Vancouver:

Larsen NG. A New Family of Topological Invariants. [Internet] [Masters thesis]. Brigham Young University; 2018. [cited 2020 Sep 20]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd.

Council of Science Editors:

Larsen NG. A New Family of Topological Invariants. [Masters Thesis]. Brigham Young University; 2018. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd


University of Colorado

19. Willis, John Martin. Topological Foundations of Tropical Geometry.

Degree: PhD, 2019, University of Colorado

  We construct two subcanonical Grothendieck Topologies on the category of commutative, integral monoids and show that the moduli space of tropical curves is a… (more)

Subjects/Keywords: algebraic geometry; monoids; topology; tropical geometry; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Willis, J. M. (2019). Topological Foundations of Tropical Geometry. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/70

Chicago Manual of Style (16th Edition):

Willis, John Martin. “Topological Foundations of Tropical Geometry.” 2019. Doctoral Dissertation, University of Colorado. Accessed September 20, 2020. https://scholar.colorado.edu/math_gradetds/70.

MLA Handbook (7th Edition):

Willis, John Martin. “Topological Foundations of Tropical Geometry.” 2019. Web. 20 Sep 2020.

Vancouver:

Willis JM. Topological Foundations of Tropical Geometry. [Internet] [Doctoral dissertation]. University of Colorado; 2019. [cited 2020 Sep 20]. Available from: https://scholar.colorado.edu/math_gradetds/70.

Council of Science Editors:

Willis JM. Topological Foundations of Tropical Geometry. [Doctoral Dissertation]. University of Colorado; 2019. Available from: https://scholar.colorado.edu/math_gradetds/70


University of Adelaide

20. Roberts, David Michael. Fundamental bigroupoids and 2-covering spaces.

Degree: 2010, University of Adelaide

 This thesis introduces two main concepts: a fundamental bigroupoid of a topological groupoid and 2-covering spaces, a categorification of covering spaces. The first is applied… (more)

Subjects/Keywords: category theory; groupoids; algebraic topology; homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roberts, D. M. (2010). Fundamental bigroupoids and 2-covering spaces. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/62680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Roberts, David Michael. “Fundamental bigroupoids and 2-covering spaces.” 2010. Thesis, University of Adelaide. Accessed September 20, 2020. http://hdl.handle.net/2440/62680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Roberts, David Michael. “Fundamental bigroupoids and 2-covering spaces.” 2010. Web. 20 Sep 2020.

Vancouver:

Roberts DM. Fundamental bigroupoids and 2-covering spaces. [Internet] [Thesis]. University of Adelaide; 2010. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2440/62680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roberts DM. Fundamental bigroupoids and 2-covering spaces. [Thesis]. University of Adelaide; 2010. Available from: http://hdl.handle.net/2440/62680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Aberdeen

21. Alghamdi, Mohamed A. M. A. Some problems in algebraic topology : polynomial algebras over the Steenrod algebra.

Degree: PhD, 1991, University of Aberdeen

 We prove two theorems concerning the action of the Steenrod algebra in cohomology and homology. (i) Let A denote a finitely generated graded Fp polynomial… (more)

Subjects/Keywords: 510; Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alghamdi, M. A. M. A. (1991). Some problems in algebraic topology : polynomial algebras over the Steenrod algebra. (Doctoral Dissertation). University of Aberdeen. Retrieved from http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=166808 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279407

Chicago Manual of Style (16th Edition):

Alghamdi, Mohamed A M A. “Some problems in algebraic topology : polynomial algebras over the Steenrod algebra.” 1991. Doctoral Dissertation, University of Aberdeen. Accessed September 20, 2020. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=166808 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279407.

MLA Handbook (7th Edition):

Alghamdi, Mohamed A M A. “Some problems in algebraic topology : polynomial algebras over the Steenrod algebra.” 1991. Web. 20 Sep 2020.

Vancouver:

Alghamdi MAMA. Some problems in algebraic topology : polynomial algebras over the Steenrod algebra. [Internet] [Doctoral dissertation]. University of Aberdeen; 1991. [cited 2020 Sep 20]. Available from: http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=166808 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279407.

Council of Science Editors:

Alghamdi MAMA. Some problems in algebraic topology : polynomial algebras over the Steenrod algebra. [Doctoral Dissertation]. University of Aberdeen; 1991. Available from: http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=166808 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279407


University of Oxford

22. Wahl, N. Ribbon braids and related operads.

Degree: PhD, 2001, University of Oxford

 This thesis consists of two parts, both being concerned with operads related to the ribbon braid groups. In the first part, we define a notion… (more)

Subjects/Keywords: 510; Algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wahl, N. (2001). Ribbon braids and related operads. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:4ae9f906-be3e-4cba-bf3c-a626337d1cf9 : http://eprints.maths.ox.ac.uk/43/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365324

Chicago Manual of Style (16th Edition):

Wahl, N. “Ribbon braids and related operads.” 2001. Doctoral Dissertation, University of Oxford. Accessed September 20, 2020. http://ora.ox.ac.uk/objects/uuid:4ae9f906-be3e-4cba-bf3c-a626337d1cf9 : http://eprints.maths.ox.ac.uk/43/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365324.

MLA Handbook (7th Edition):

Wahl, N. “Ribbon braids and related operads.” 2001. Web. 20 Sep 2020.

Vancouver:

Wahl N. Ribbon braids and related operads. [Internet] [Doctoral dissertation]. University of Oxford; 2001. [cited 2020 Sep 20]. Available from: http://ora.ox.ac.uk/objects/uuid:4ae9f906-be3e-4cba-bf3c-a626337d1cf9 : http://eprints.maths.ox.ac.uk/43/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365324.

Council of Science Editors:

Wahl N. Ribbon braids and related operads. [Doctoral Dissertation]. University of Oxford; 2001. Available from: http://ora.ox.ac.uk/objects/uuid:4ae9f906-be3e-4cba-bf3c-a626337d1cf9 : http://eprints.maths.ox.ac.uk/43/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365324


University of Texas – Austin

23. -4112-5745. Aspects of derived Koszul duality.

Degree: PhD, Mathematics, 2016, University of Texas – Austin

 This thesis comprises two distinct chapters. In the first, we rigidify constructions of generalized string topology Thom spectra due to Gruher – Salvatore into lax symmetric… (more)

Subjects/Keywords: Koszul duality; String topology; Spectral algebraic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4112-5745. (2016). Aspects of derived Koszul duality. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/40331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-4112-5745. “Aspects of derived Koszul duality.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed September 20, 2020. http://hdl.handle.net/2152/40331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-4112-5745. “Aspects of derived Koszul duality.” 2016. Web. 20 Sep 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4112-5745. Aspects of derived Koszul duality. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2152/40331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-4112-5745. Aspects of derived Koszul duality. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/40331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Oregon

24. Reid, Benjamin. Constructing a v2 Self Map at p=3.

Degree: PhD, Department of Mathematics, 2017, University of Oregon

 Working at the prime p = 3, we construct a stably finite spectrum, Z, with a v21 self map f. Further, both ExtA(H*(Z),Z3) and ExtA(H*(Z),H*(Z))… (more)

Subjects/Keywords: Algebraic topology; Stable Homotopy Theory; v_n Periodicity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Reid, B. (2017). Constructing a v2 Self Map at p=3. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/22690

Chicago Manual of Style (16th Edition):

Reid, Benjamin. “Constructing a v2 Self Map at p=3.” 2017. Doctoral Dissertation, University of Oregon. Accessed September 20, 2020. http://hdl.handle.net/1794/22690.

MLA Handbook (7th Edition):

Reid, Benjamin. “Constructing a v2 Self Map at p=3.” 2017. Web. 20 Sep 2020.

Vancouver:

Reid B. Constructing a v2 Self Map at p=3. [Internet] [Doctoral dissertation]. University of Oregon; 2017. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/1794/22690.

Council of Science Editors:

Reid B. Constructing a v2 Self Map at p=3. [Doctoral Dissertation]. University of Oregon; 2017. Available from: http://hdl.handle.net/1794/22690


University of Toronto

25. Martel, Justin Harry. Applications of Optimal Transport to Algebraic Topology: A Method for Constructing Spines from Singularity.

Degree: PhD, 2019, University of Toronto

 Our thesis describes new applications of optimal transport to algebraic topology. We use a variational definition of singularity based on semicouplings and Kantorovich duality, and… (more)

Subjects/Keywords: Algebraic Topology; Optimal Transport; Singularity; Spines; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martel, J. H. (2019). Applications of Optimal Transport to Algebraic Topology: A Method for Constructing Spines from Singularity. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/97558

Chicago Manual of Style (16th Edition):

Martel, Justin Harry. “Applications of Optimal Transport to Algebraic Topology: A Method for Constructing Spines from Singularity.” 2019. Doctoral Dissertation, University of Toronto. Accessed September 20, 2020. http://hdl.handle.net/1807/97558.

MLA Handbook (7th Edition):

Martel, Justin Harry. “Applications of Optimal Transport to Algebraic Topology: A Method for Constructing Spines from Singularity.” 2019. Web. 20 Sep 2020.

Vancouver:

Martel JH. Applications of Optimal Transport to Algebraic Topology: A Method for Constructing Spines from Singularity. [Internet] [Doctoral dissertation]. University of Toronto; 2019. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/1807/97558.

Council of Science Editors:

Martel JH. Applications of Optimal Transport to Algebraic Topology: A Method for Constructing Spines from Singularity. [Doctoral Dissertation]. University of Toronto; 2019. Available from: http://hdl.handle.net/1807/97558


Texas Tech University

26. Decarlo, Raymond A. An algebraic topological approach to stability theory.

Degree: 1976, Texas Tech University

Subjects/Keywords: Algebraic topology; Stability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Decarlo, R. A. (1976). An algebraic topological approach to stability theory. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/20158

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Decarlo, Raymond A. “An algebraic topological approach to stability theory.” 1976. Thesis, Texas Tech University. Accessed September 20, 2020. http://hdl.handle.net/2346/20158.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Decarlo, Raymond A. “An algebraic topological approach to stability theory.” 1976. Web. 20 Sep 2020.

Vancouver:

Decarlo RA. An algebraic topological approach to stability theory. [Internet] [Thesis]. Texas Tech University; 1976. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2346/20158.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Decarlo RA. An algebraic topological approach to stability theory. [Thesis]. Texas Tech University; 1976. Available from: http://hdl.handle.net/2346/20158

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Missouri – Columbia

27. Brigham, Dan. Quasi-metric geometry.

Degree: 2014, University of Missouri – Columbia

 [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Every time one sees |x-y|, one is looking at a specific metric acting on x… (more)

Subjects/Keywords: Quasi-metric spaces; Algebraic topology; Groupoids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brigham, D. (2014). Quasi-metric geometry. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/45843

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Brigham, Dan. “Quasi-metric geometry.” 2014. Thesis, University of Missouri – Columbia. Accessed September 20, 2020. http://hdl.handle.net/10355/45843.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Brigham, Dan. “Quasi-metric geometry.” 2014. Web. 20 Sep 2020.

Vancouver:

Brigham D. Quasi-metric geometry. [Internet] [Thesis]. University of Missouri – Columbia; 2014. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10355/45843.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brigham D. Quasi-metric geometry. [Thesis]. University of Missouri – Columbia; 2014. Available from: http://hdl.handle.net/10355/45843

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of British Columbia

28. Lewis, James Dominic. Normal functions of product varieties .

Degree: 1981, University of British Columbia

 The work of this thesis is to motivate the following: Statement: The Hodge conjecture holds for products of varieties Z = XxC where (i) X… (more)

Subjects/Keywords: Algebraic topology; Geometry, Algebraic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lewis, J. D. (1981). Normal functions of product varieties . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/23075

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lewis, James Dominic. “Normal functions of product varieties .” 1981. Thesis, University of British Columbia. Accessed September 20, 2020. http://hdl.handle.net/2429/23075.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lewis, James Dominic. “Normal functions of product varieties .” 1981. Web. 20 Sep 2020.

Vancouver:

Lewis JD. Normal functions of product varieties . [Internet] [Thesis]. University of British Columbia; 1981. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2429/23075.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lewis JD. Normal functions of product varieties . [Thesis]. University of British Columbia; 1981. Available from: http://hdl.handle.net/2429/23075

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Pennsylvania

29. Curry, Justin Michael. Sheaves, Cosheaves and Applications.

Degree: 2014, University of Pennsylvania

 This thesis develops the theory of sheaves and cosheaves with an eye towards applications in science and engineering. To provide a theory that is computable,… (more)

Subjects/Keywords: algebraic topology; applied topology; cosheaves; sheaves; stratification theory; Applied Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Curry, J. M. (2014). Sheaves, Cosheaves and Applications. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/1249

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Curry, Justin Michael. “Sheaves, Cosheaves and Applications.” 2014. Thesis, University of Pennsylvania. Accessed September 20, 2020. https://repository.upenn.edu/edissertations/1249.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Curry, Justin Michael. “Sheaves, Cosheaves and Applications.” 2014. Web. 20 Sep 2020.

Vancouver:

Curry JM. Sheaves, Cosheaves and Applications. [Internet] [Thesis]. University of Pennsylvania; 2014. [cited 2020 Sep 20]. Available from: https://repository.upenn.edu/edissertations/1249.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Curry JM. Sheaves, Cosheaves and Applications. [Thesis]. University of Pennsylvania; 2014. Available from: https://repository.upenn.edu/edissertations/1249

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McMaster University

30. Tan, Anthony. Persistent Homology and Machine Learning.

Degree: MSc, 2020, McMaster University

Persistent homology is a technique of topological data analysis that seeks to understand the shape of data. We study the effectiveness of a single-layer perceptron… (more)

Subjects/Keywords: Algebraic Topology; Machine Learning; Applied Topology; Persistent Homology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tan, A. (2020). Persistent Homology and Machine Learning. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/25538

Chicago Manual of Style (16th Edition):

Tan, Anthony. “Persistent Homology and Machine Learning.” 2020. Masters Thesis, McMaster University. Accessed September 20, 2020. http://hdl.handle.net/11375/25538.

MLA Handbook (7th Edition):

Tan, Anthony. “Persistent Homology and Machine Learning.” 2020. Web. 20 Sep 2020.

Vancouver:

Tan A. Persistent Homology and Machine Learning. [Internet] [Masters thesis]. McMaster University; 2020. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/11375/25538.

Council of Science Editors:

Tan A. Persistent Homology and Machine Learning. [Masters Thesis]. McMaster University; 2020. Available from: http://hdl.handle.net/11375/25538

[1] [2] [3] [4] [5] [6] [7] [8] [9]

.