Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Affine vector fields Lie algebras). Showing records 1 – 30 of 13901 total matches.

[1] [2] [3] [4] [5] … [464]

Search Limiters

Last 2 Years | English Only

Degrees

Languages

Country

▼ Search Limiters


University of Aberdeen

1. Nunes Castanheira da Costa, Jose Manuel. Affine and curvature collineations in space-time.

Degree: PhD, 1989, University of Aberdeen

 The purpose of this thesis is the study of the Lie algebras of affine vector fields and curvature collineations of space-time, the aim being, in… (more)

Subjects/Keywords: 510; Affine vector fields][Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nunes Castanheira da Costa, J. M. (1989). Affine and curvature collineations in space-time. (Doctoral Dissertation). University of Aberdeen. Retrieved from http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602256 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254476

Chicago Manual of Style (16th Edition):

Nunes Castanheira da Costa, Jose Manuel. “Affine and curvature collineations in space-time.” 1989. Doctoral Dissertation, University of Aberdeen. Accessed September 21, 2020. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602256 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254476.

MLA Handbook (7th Edition):

Nunes Castanheira da Costa, Jose Manuel. “Affine and curvature collineations in space-time.” 1989. Web. 21 Sep 2020.

Vancouver:

Nunes Castanheira da Costa JM. Affine and curvature collineations in space-time. [Internet] [Doctoral dissertation]. University of Aberdeen; 1989. [cited 2020 Sep 21]. Available from: http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602256 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254476.

Council of Science Editors:

Nunes Castanheira da Costa JM. Affine and curvature collineations in space-time. [Doctoral Dissertation]. University of Aberdeen; 1989. Available from: http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602256 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254476

2. Muthiah, Dinakar. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.

Degree: PhD, Mathematics, 2013, Brown University

 The theory of Mirkovic-Vilonen (MV) cycles and polytopes associated to a complex reductive group G has proven to be a rich source of structures related… (more)

Subjects/Keywords: affine Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Muthiah, D. (2013). Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:320617/

Chicago Manual of Style (16th Edition):

Muthiah, Dinakar. “Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.” 2013. Doctoral Dissertation, Brown University. Accessed September 21, 2020. https://repository.library.brown.edu/studio/item/bdr:320617/.

MLA Handbook (7th Edition):

Muthiah, Dinakar. “Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.” 2013. Web. 21 Sep 2020.

Vancouver:

Muthiah D. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. [Internet] [Doctoral dissertation]. Brown University; 2013. [cited 2020 Sep 21]. Available from: https://repository.library.brown.edu/studio/item/bdr:320617/.

Council of Science Editors:

Muthiah D. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. [Doctoral Dissertation]. Brown University; 2013. Available from: https://repository.library.brown.edu/studio/item/bdr:320617/


Rutgers University

3. Nandi, Debajyoti, 1980-. Partition identities arising from the standard A(2)2-modules of level 4.

Degree: PhD, Mathematics, 2014, Rutgers University

In this dissertation, we propose a set of new partition identities, arising from a twisted vertex operator construction of the level 4 standard modules for… (more)

Subjects/Keywords: Affine algebraic groups; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nandi, Debajyoti, 1. (2014). Partition identities arising from the standard A(2)2-modules of level 4. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/45379/

Chicago Manual of Style (16th Edition):

Nandi, Debajyoti, 1980-. “Partition identities arising from the standard A(2)2-modules of level 4.” 2014. Doctoral Dissertation, Rutgers University. Accessed September 21, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/45379/.

MLA Handbook (7th Edition):

Nandi, Debajyoti, 1980-. “Partition identities arising from the standard A(2)2-modules of level 4.” 2014. Web. 21 Sep 2020.

Vancouver:

Nandi, Debajyoti 1. Partition identities arising from the standard A(2)2-modules of level 4. [Internet] [Doctoral dissertation]. Rutgers University; 2014. [cited 2020 Sep 21]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45379/.

Council of Science Editors:

Nandi, Debajyoti 1. Partition identities arising from the standard A(2)2-modules of level 4. [Doctoral Dissertation]. Rutgers University; 2014. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45379/

4. Shi, Song. Imaginary Whittaker Modules For Extended Affine Lie Algebras.

Degree: PhD, Mathematics & Statistics, 2016, York University

 We classify irreducible Whittaker modules for generalized Heisenberg Lie algebra t and irreducible Whittaker modules for Lie algebra t obtained by adjoining m degree derivations… (more)

Subjects/Keywords: Mathematics; Extended affine Lie algebras; Imaginary Whittaker modules; Generalized Heisenberg Lie algebra; Affine Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shi, S. (2016). Imaginary Whittaker Modules For Extended Affine Lie Algebras. (Doctoral Dissertation). York University. Retrieved from http://hdl.handle.net/10315/32319

Chicago Manual of Style (16th Edition):

Shi, Song. “Imaginary Whittaker Modules For Extended Affine Lie Algebras.” 2016. Doctoral Dissertation, York University. Accessed September 21, 2020. http://hdl.handle.net/10315/32319.

MLA Handbook (7th Edition):

Shi, Song. “Imaginary Whittaker Modules For Extended Affine Lie Algebras.” 2016. Web. 21 Sep 2020.

Vancouver:

Shi S. Imaginary Whittaker Modules For Extended Affine Lie Algebras. [Internet] [Doctoral dissertation]. York University; 2016. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10315/32319.

Council of Science Editors:

Shi S. Imaginary Whittaker Modules For Extended Affine Lie Algebras. [Doctoral Dissertation]. York University; 2016. Available from: http://hdl.handle.net/10315/32319

5. Barucchieri, Bianca. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.

Degree: Docteur es, Mathématiques Pures, 2019, Bordeaux

Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte… (more)

Subjects/Keywords: Variétés affines; Groupes cristallographiques; Variétés Hermite-Lorentz; Algèbres de Lie nilpotentes; Affine manifolds; Crystallographic groups; Hermite-Lorentz manifolds; Nilpotent Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barucchieri, B. (2019). Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2019BORD0153

Chicago Manual of Style (16th Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Doctoral Dissertation, Bordeaux. Accessed September 21, 2020. http://www.theses.fr/2019BORD0153.

MLA Handbook (7th Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Web. 21 Sep 2020.

Vancouver:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Internet] [Doctoral dissertation]. Bordeaux; 2019. [cited 2020 Sep 21]. Available from: http://www.theses.fr/2019BORD0153.

Council of Science Editors:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Doctoral Dissertation]. Bordeaux; 2019. Available from: http://www.theses.fr/2019BORD0153


University of Alberta

6. Yahorau, Uladzimir. Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2014, University of Alberta

 Chevalley's theorem on the conjugacy of split Cartan subalgebras is one of the cornerstones of the theory of simple finite dimensional Lie algebras over a… (more)

Subjects/Keywords: Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yahorau, U. (2014). Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/s1784m28s

Chicago Manual of Style (16th Edition):

Yahorau, Uladzimir. “Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras.” 2014. Doctoral Dissertation, University of Alberta. Accessed September 21, 2020. https://era.library.ualberta.ca/files/s1784m28s.

MLA Handbook (7th Edition):

Yahorau, Uladzimir. “Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras.” 2014. Web. 21 Sep 2020.

Vancouver:

Yahorau U. Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras. [Internet] [Doctoral dissertation]. University of Alberta; 2014. [cited 2020 Sep 21]. Available from: https://era.library.ualberta.ca/files/s1784m28s.

Council of Science Editors:

Yahorau U. Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras. [Doctoral Dissertation]. University of Alberta; 2014. Available from: https://era.library.ualberta.ca/files/s1784m28s


University of Saskatchewan

7. Azam, Saeid. Extended affine lie algebras and extended affine weyl groups.

Degree: 1997, University of Saskatchewan

 This thesis is about extended affine Lie algebras and extended affine Weyl groups. In Chapter I, we provide the basic knowledge necessary for the study… (more)

Subjects/Keywords: mathematics; Lie algebra; extended affine Lie algebras; extended affine Weyl groups; automorphism

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Azam, S. (1997). Extended affine lie algebras and extended affine weyl groups. (Thesis). University of Saskatchewan. Retrieved from http://hdl.handle.net/10388/etd-10212004-001324

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Azam, Saeid. “Extended affine lie algebras and extended affine weyl groups.” 1997. Thesis, University of Saskatchewan. Accessed September 21, 2020. http://hdl.handle.net/10388/etd-10212004-001324.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Azam, Saeid. “Extended affine lie algebras and extended affine weyl groups.” 1997. Web. 21 Sep 2020.

Vancouver:

Azam S. Extended affine lie algebras and extended affine weyl groups. [Internet] [Thesis]. University of Saskatchewan; 1997. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10388/etd-10212004-001324.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Azam S. Extended affine lie algebras and extended affine weyl groups. [Thesis]. University of Saskatchewan; 1997. Available from: http://hdl.handle.net/10388/etd-10212004-001324

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Tartu University

8. Retšnoi, Vitali. Vector fields and Lie group representations .

Degree: 2012, Tartu University

 Käesoleva väitekirja uurimisobjektiks on vektorväli, mis on üks olulisematest mõistetest diferentsiaalgeomeetrias ja globaalanalüüsis ning mis leiab rakendust pideva keskkonna mehaanikas ja dünaamilistes süsteemides. Töös on… (more)

Subjects/Keywords: vektorväljad; Lie' rühmad; rühmade esitused; vector fields; Lie' groups; representations of groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Retšnoi, V. (2012). Vector fields and Lie group representations . (Thesis). Tartu University. Retrieved from http://hdl.handle.net/10062/27463

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Retšnoi, Vitali. “Vector fields and Lie group representations .” 2012. Thesis, Tartu University. Accessed September 21, 2020. http://hdl.handle.net/10062/27463.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Retšnoi, Vitali. “Vector fields and Lie group representations .” 2012. Web. 21 Sep 2020.

Vancouver:

Retšnoi V. Vector fields and Lie group representations . [Internet] [Thesis]. Tartu University; 2012. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10062/27463.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Retšnoi V. Vector fields and Lie group representations . [Thesis]. Tartu University; 2012. Available from: http://hdl.handle.net/10062/27463

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Southern California

9. Warner, Harry Jared, IV. Springer isomorphisms and the variety of elementary subalgebras.

Degree: PhD, Mathematics, 2015, University of Southern California

 Over a field of large enough characteristic, we use the canonical Springer isomorphism between the unipotent variety of a connected, reductive group and the nilpotent… (more)

Subjects/Keywords: affine group schemes; representation theory; support varieties; Springer isomorphism; algebraic groups; elementary subalgebras; restricted Lie algebras; elementary Abelian subgroups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Warner, Harry Jared, I. (2015). Springer isomorphisms and the variety of elementary subalgebras. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023

Chicago Manual of Style (16th Edition):

Warner, Harry Jared, IV. “Springer isomorphisms and the variety of elementary subalgebras.” 2015. Doctoral Dissertation, University of Southern California. Accessed September 21, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023.

MLA Handbook (7th Edition):

Warner, Harry Jared, IV. “Springer isomorphisms and the variety of elementary subalgebras.” 2015. Web. 21 Sep 2020.

Vancouver:

Warner, Harry Jared I. Springer isomorphisms and the variety of elementary subalgebras. [Internet] [Doctoral dissertation]. University of Southern California; 2015. [cited 2020 Sep 21]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023.

Council of Science Editors:

Warner, Harry Jared I. Springer isomorphisms and the variety of elementary subalgebras. [Doctoral Dissertation]. University of Southern California; 2015. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023


University of Ghana

10. Dzikpor, D.N. Lie Groups, Lie Algebras and some applications in Physics .

Degree: 2019, University of Ghana

 Given a Lie algebra g and its complexi_cation gC; the representations of gC are isomorphic to those of g. Moreover, if g is the corresponding… (more)

Subjects/Keywords: Lie Groups; Lie Algebras; Physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dzikpor, D. N. (2019). Lie Groups, Lie Algebras and some applications in Physics . (Masters Thesis). University of Ghana. Retrieved from http://ugspace.ug.edu.gh/handle/123456789/34762

Chicago Manual of Style (16th Edition):

Dzikpor, D N. “Lie Groups, Lie Algebras and some applications in Physics .” 2019. Masters Thesis, University of Ghana. Accessed September 21, 2020. http://ugspace.ug.edu.gh/handle/123456789/34762.

MLA Handbook (7th Edition):

Dzikpor, D N. “Lie Groups, Lie Algebras and some applications in Physics .” 2019. Web. 21 Sep 2020.

Vancouver:

Dzikpor DN. Lie Groups, Lie Algebras and some applications in Physics . [Internet] [Masters thesis]. University of Ghana; 2019. [cited 2020 Sep 21]. Available from: http://ugspace.ug.edu.gh/handle/123456789/34762.

Council of Science Editors:

Dzikpor DN. Lie Groups, Lie Algebras and some applications in Physics . [Masters Thesis]. University of Ghana; 2019. Available from: http://ugspace.ug.edu.gh/handle/123456789/34762


Utah State University

11. Graner, Nicholas. Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula.

Degree: MS, Mathematics and Statistics, 2018, Utah State University

Lie Groups occur in math and physics as representations of continuous symmetries and are often described in terms of their Lie Algebra. This thesis… (more)

Subjects/Keywords: Lie groups; Lie algebras; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Graner, N. (2018). Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula. (Masters Thesis). Utah State University. Retrieved from https://digitalcommons.usu.edu/etd/7232

Chicago Manual of Style (16th Edition):

Graner, Nicholas. “Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula.” 2018. Masters Thesis, Utah State University. Accessed September 21, 2020. https://digitalcommons.usu.edu/etd/7232.

MLA Handbook (7th Edition):

Graner, Nicholas. “Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula.” 2018. Web. 21 Sep 2020.

Vancouver:

Graner N. Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula. [Internet] [Masters thesis]. Utah State University; 2018. [cited 2020 Sep 21]. Available from: https://digitalcommons.usu.edu/etd/7232.

Council of Science Editors:

Graner N. Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula. [Masters Thesis]. Utah State University; 2018. Available from: https://digitalcommons.usu.edu/etd/7232


Rutgers University

12. Ginory, Alejandro, 1983-. Two problems in representation theory: affine Lie algebras and algebraic combinatorics.

Degree: PhD, Affine Lie algebras, 2019, Rutgers University

In this dissertation, we investigate two topics with roots in representation theory. The first topic is about twisted affine Kac-Moody algebras and vector spaces spanned… (more)

Subjects/Keywords: Mathematics; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ginory, Alejandro, 1. (2019). Two problems in representation theory: affine Lie algebras and algebraic combinatorics. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/60636/

Chicago Manual of Style (16th Edition):

Ginory, Alejandro, 1983-. “Two problems in representation theory: affine Lie algebras and algebraic combinatorics.” 2019. Doctoral Dissertation, Rutgers University. Accessed September 21, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/60636/.

MLA Handbook (7th Edition):

Ginory, Alejandro, 1983-. “Two problems in representation theory: affine Lie algebras and algebraic combinatorics.” 2019. Web. 21 Sep 2020.

Vancouver:

Ginory, Alejandro 1. Two problems in representation theory: affine Lie algebras and algebraic combinatorics. [Internet] [Doctoral dissertation]. Rutgers University; 2019. [cited 2020 Sep 21]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/60636/.

Council of Science Editors:

Ginory, Alejandro 1. Two problems in representation theory: affine Lie algebras and algebraic combinatorics. [Doctoral Dissertation]. Rutgers University; 2019. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/60636/


Tartu University

13. Lätt, Priit. Induced 3-Lie superalgebras and their applications in superspace .

Degree: 2020, Tartu University

 Käesoleva doktoritöö eesmärk on uurida selliste n-Lie superalgerbrate omadusi, mis on konstrueeritud kasutades (n-1)-Lie superalgebra aluseks olevat (n-1)-aarset tehet, seda eriti juhul n=3. Tavalise Lie(more)

Subjects/Keywords: superalgebras; Lie' algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lätt, P. (2020). Induced 3-Lie superalgebras and their applications in superspace . (Thesis). Tartu University. Retrieved from http://hdl.handle.net/10062/68425

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lätt, Priit. “Induced 3-Lie superalgebras and their applications in superspace .” 2020. Thesis, Tartu University. Accessed September 21, 2020. http://hdl.handle.net/10062/68425.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lätt, Priit. “Induced 3-Lie superalgebras and their applications in superspace .” 2020. Web. 21 Sep 2020.

Vancouver:

Lätt P. Induced 3-Lie superalgebras and their applications in superspace . [Internet] [Thesis]. Tartu University; 2020. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10062/68425.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lätt P. Induced 3-Lie superalgebras and their applications in superspace . [Thesis]. Tartu University; 2020. Available from: http://hdl.handle.net/10062/68425

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Du crest de villeneuve, Ann. Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies.

Degree: Docteur es, Mathématiques, 2018, Angers

Cette thèse traite du calcul et des applications des fonctions tau des hiérarchies de Drinfeld–Sokolov introduites en 1984. Les hiérarchies de Drinfeld–Sokolov sont des suites… (more)

Subjects/Keywords: Algèbres de Lie affines; Hiérarchies de Drinfeld–Sokolov; Fonctions tau; Hiérarchie de double ramification; Integrable systems; Affine Lie algebras; Drinfeld–Sokolov hierarchies; Tau functions; Double ramification hierarchies; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Du crest de villeneuve, A. (2018). Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies. (Doctoral Dissertation). Angers. Retrieved from http://www.theses.fr/2018ANGE0019

Chicago Manual of Style (16th Edition):

Du crest de villeneuve, Ann. “Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies.” 2018. Doctoral Dissertation, Angers. Accessed September 21, 2020. http://www.theses.fr/2018ANGE0019.

MLA Handbook (7th Edition):

Du crest de villeneuve, Ann. “Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies.” 2018. Web. 21 Sep 2020.

Vancouver:

Du crest de villeneuve A. Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies. [Internet] [Doctoral dissertation]. Angers; 2018. [cited 2020 Sep 21]. Available from: http://www.theses.fr/2018ANGE0019.

Council of Science Editors:

Du crest de villeneuve A. Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies. [Doctoral Dissertation]. Angers; 2018. Available from: http://www.theses.fr/2018ANGE0019


North Carolina State University

15. Cook, William Jeffrey. Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities.

Degree: PhD, Mathematics, 2005, North Carolina State University

Affine Lie algebra representations have many connections with different areas of mathematics and physics. One such connection in mathematics is with number theory and in… (more)

Subjects/Keywords: rogers-ramanujan combinartorial identities; affine lie algebras; vertex operator algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cook, W. J. (2005). Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/4972

Chicago Manual of Style (16th Edition):

Cook, William Jeffrey. “Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities.” 2005. Doctoral Dissertation, North Carolina State University. Accessed September 21, 2020. http://www.lib.ncsu.edu/resolver/1840.16/4972.

MLA Handbook (7th Edition):

Cook, William Jeffrey. “Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities.” 2005. Web. 21 Sep 2020.

Vancouver:

Cook WJ. Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities. [Internet] [Doctoral dissertation]. North Carolina State University; 2005. [cited 2020 Sep 21]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4972.

Council of Science Editors:

Cook WJ. Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities. [Doctoral Dissertation]. North Carolina State University; 2005. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4972


University of Oxford

16. Calvert, Kieran. Variants of Schur-Weyl duality and Dirac cohomology.

Degree: PhD, 2019, University of Oxford

 This thesis is divided into the following three parts. <b>Chapter 1: Realising the projective representations of Sn</b> We derive an explicit description of the genuine… (more)

Subjects/Keywords: Lie Groups; Lie algebras; Representations of groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Calvert, K. (2019). Variants of Schur-Weyl duality and Dirac cohomology. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:29e57863-76c7-4f1d-83e2-fa5080a44824 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786251

Chicago Manual of Style (16th Edition):

Calvert, Kieran. “Variants of Schur-Weyl duality and Dirac cohomology.” 2019. Doctoral Dissertation, University of Oxford. Accessed September 21, 2020. http://ora.ox.ac.uk/objects/uuid:29e57863-76c7-4f1d-83e2-fa5080a44824 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786251.

MLA Handbook (7th Edition):

Calvert, Kieran. “Variants of Schur-Weyl duality and Dirac cohomology.” 2019. Web. 21 Sep 2020.

Vancouver:

Calvert K. Variants of Schur-Weyl duality and Dirac cohomology. [Internet] [Doctoral dissertation]. University of Oxford; 2019. [cited 2020 Sep 21]. Available from: http://ora.ox.ac.uk/objects/uuid:29e57863-76c7-4f1d-83e2-fa5080a44824 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786251.

Council of Science Editors:

Calvert K. Variants of Schur-Weyl duality and Dirac cohomology. [Doctoral Dissertation]. University of Oxford; 2019. Available from: http://ora.ox.ac.uk/objects/uuid:29e57863-76c7-4f1d-83e2-fa5080a44824 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786251


Latrobe University

17. Hinic Galic, Ana. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.

Degree: PhD, 2012, Latrobe University

Thesis (Ph.D.) - La Trobe University, 2012

Submission note: "A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy… (more)

Subjects/Keywords: Lie algebras.; Geometry, Riemannian.; Nilpotent Lie groups.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hinic Galic, A. (2012). Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. (Doctoral Dissertation). Latrobe University. Retrieved from http://hdl.handle.net/1959.9/512945

Chicago Manual of Style (16th Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Doctoral Dissertation, Latrobe University. Accessed September 21, 2020. http://hdl.handle.net/1959.9/512945.

MLA Handbook (7th Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Web. 21 Sep 2020.

Vancouver:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Internet] [Doctoral dissertation]. Latrobe University; 2012. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/1959.9/512945.

Council of Science Editors:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Doctoral Dissertation]. Latrobe University; 2012. Available from: http://hdl.handle.net/1959.9/512945


University of California – Riverside

18. Shereen, Peri. A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules.

Degree: Mathematics, 2015, University of California – Riverside

 We study Demazure modules which occur in a level ℓ irreducible integrable representation of an affine Lie algebra. We also assume that they are stable… (more)

Subjects/Keywords: Mathematics; Lie Algebras; Representation Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shereen, P. (2015). A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/85r1r7nd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shereen, Peri. “A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules.” 2015. Thesis, University of California – Riverside. Accessed September 21, 2020. http://www.escholarship.org/uc/item/85r1r7nd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shereen, Peri. “A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules.” 2015. Web. 21 Sep 2020.

Vancouver:

Shereen P. A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules. [Internet] [Thesis]. University of California – Riverside; 2015. [cited 2020 Sep 21]. Available from: http://www.escholarship.org/uc/item/85r1r7nd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shereen P. A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules. [Thesis]. University of California – Riverside; 2015. Available from: http://www.escholarship.org/uc/item/85r1r7nd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

19. Skierski, Maciej. Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction.

Degree: PhD, Department of Physics, 1991, University of Alberta

Subjects/Keywords: Lie algebras.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Skierski, M. (1991). Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/8g84mp31v

Chicago Manual of Style (16th Edition):

Skierski, Maciej. “Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction.” 1991. Doctoral Dissertation, University of Alberta. Accessed September 21, 2020. https://era.library.ualberta.ca/files/8g84mp31v.

MLA Handbook (7th Edition):

Skierski, Maciej. “Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction.” 1991. Web. 21 Sep 2020.

Vancouver:

Skierski M. Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction. [Internet] [Doctoral dissertation]. University of Alberta; 1991. [cited 2020 Sep 21]. Available from: https://era.library.ualberta.ca/files/8g84mp31v.

Council of Science Editors:

Skierski M. Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction. [Doctoral Dissertation]. University of Alberta; 1991. Available from: https://era.library.ualberta.ca/files/8g84mp31v


University of Johannesburg

20. Euler, Norbert. Continuous symmetries, lie algebras and differential equations.

Degree: 2014, University of Johannesburg

D.Sc. (Mathematics)

In this thesis aspects of continuous symmetries of differential equations are studied. In particular the following aspects are studied in detail: Lie algebras,… (more)

Subjects/Keywords: Differential equations, Nonlinear; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Euler, N. (2014). Continuous symmetries, lie algebras and differential equations. (Thesis). University of Johannesburg. Retrieved from http://hdl.handle.net/10210/9131

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Euler, Norbert. “Continuous symmetries, lie algebras and differential equations.” 2014. Thesis, University of Johannesburg. Accessed September 21, 2020. http://hdl.handle.net/10210/9131.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Euler, Norbert. “Continuous symmetries, lie algebras and differential equations.” 2014. Web. 21 Sep 2020.

Vancouver:

Euler N. Continuous symmetries, lie algebras and differential equations. [Internet] [Thesis]. University of Johannesburg; 2014. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10210/9131.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Euler N. Continuous symmetries, lie algebras and differential equations. [Thesis]. University of Johannesburg; 2014. Available from: http://hdl.handle.net/10210/9131

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Hong Kong University of Science and Technology

21. Hu, Mingan. Dihedral groups of Lie algebra automorphisms.

Degree: 2017, Hong Kong University of Science and Technology

 In this thesis, we consider a general construction of dihedral subgroups Dn, in the auto-morphism group of a complex finite-dimensional simple Lie algebra g. Our… (more)

Subjects/Keywords: Group theory ; Lie algebras ; Automorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hu, M. (2017). Dihedral groups of Lie algebra automorphisms. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-89189 ; https://doi.org/10.14711/thesis-991012530268403412 ; http://repository.ust.hk/ir/bitstream/1783.1-89189/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hu, Mingan. “Dihedral groups of Lie algebra automorphisms.” 2017. Thesis, Hong Kong University of Science and Technology. Accessed September 21, 2020. http://repository.ust.hk/ir/Record/1783.1-89189 ; https://doi.org/10.14711/thesis-991012530268403412 ; http://repository.ust.hk/ir/bitstream/1783.1-89189/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hu, Mingan. “Dihedral groups of Lie algebra automorphisms.” 2017. Web. 21 Sep 2020.

Vancouver:

Hu M. Dihedral groups of Lie algebra automorphisms. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2017. [cited 2020 Sep 21]. Available from: http://repository.ust.hk/ir/Record/1783.1-89189 ; https://doi.org/10.14711/thesis-991012530268403412 ; http://repository.ust.hk/ir/bitstream/1783.1-89189/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hu M. Dihedral groups of Lie algebra automorphisms. [Thesis]. Hong Kong University of Science and Technology; 2017. Available from: http://repository.ust.hk/ir/Record/1783.1-89189 ; https://doi.org/10.14711/thesis-991012530268403412 ; http://repository.ust.hk/ir/bitstream/1783.1-89189/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

22. Myung, Hyo Chul, 1937-. Flexible lie-admissible algebras.

Degree: PhD, Department of Mathematics, 1970, Michigan State University

Subjects/Keywords: Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Myung, Hyo Chul, 1. (1970). Flexible lie-admissible algebras. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:41574

Chicago Manual of Style (16th Edition):

Myung, Hyo Chul, 1937-. “Flexible lie-admissible algebras.” 1970. Doctoral Dissertation, Michigan State University. Accessed September 21, 2020. http://etd.lib.msu.edu/islandora/object/etd:41574.

MLA Handbook (7th Edition):

Myung, Hyo Chul, 1937-. “Flexible lie-admissible algebras.” 1970. Web. 21 Sep 2020.

Vancouver:

Myung, Hyo Chul 1. Flexible lie-admissible algebras. [Internet] [Doctoral dissertation]. Michigan State University; 1970. [cited 2020 Sep 21]. Available from: http://etd.lib.msu.edu/islandora/object/etd:41574.

Council of Science Editors:

Myung, Hyo Chul 1. Flexible lie-admissible algebras. [Doctoral Dissertation]. Michigan State University; 1970. Available from: http://etd.lib.msu.edu/islandora/object/etd:41574


University of Notre Dame

23. Nicole Rae Kroeger. Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>.

Degree: Mathematics, 2014, University of Notre Dame

  Given a complex, semisimple Lie biaglebra, we consider the coisotropic subalgebras–the Lie subalgebras of whose annihilator in the dual space is a Lie subalgebra… (more)

Subjects/Keywords: coisotropic subalgebras; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kroeger, N. R. (2014). Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/ks65h99214b

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kroeger, Nicole Rae. “Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>.” 2014. Thesis, University of Notre Dame. Accessed September 21, 2020. https://curate.nd.edu/show/ks65h99214b.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kroeger, Nicole Rae. “Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>.” 2014. Web. 21 Sep 2020.

Vancouver:

Kroeger NR. Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>. [Internet] [Thesis]. University of Notre Dame; 2014. [cited 2020 Sep 21]. Available from: https://curate.nd.edu/show/ks65h99214b.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kroeger NR. Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>. [Thesis]. University of Notre Dame; 2014. Available from: https://curate.nd.edu/show/ks65h99214b

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


East Carolina University

24. Clark, Erica. Lie Algebra Representation Theory.

Degree: MA, MA-Mathematics, 2019, East Carolina University

We give a brief introduction to structure theory of Lie algebras, followed by representation theory. This thesis culminates in the presentation of the Theorem of the Highest Weight for a Lie algebra. Advisors/Committee Members: Jantzen, Chris, 1962- (advisor).

Subjects/Keywords: representation theory; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Clark, E. (2019). Lie Algebra Representation Theory. (Masters Thesis). East Carolina University. Retrieved from http://hdl.handle.net/10342/7283

Chicago Manual of Style (16th Edition):

Clark, Erica. “Lie Algebra Representation Theory.” 2019. Masters Thesis, East Carolina University. Accessed September 21, 2020. http://hdl.handle.net/10342/7283.

MLA Handbook (7th Edition):

Clark, Erica. “Lie Algebra Representation Theory.” 2019. Web. 21 Sep 2020.

Vancouver:

Clark E. Lie Algebra Representation Theory. [Internet] [Masters thesis]. East Carolina University; 2019. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10342/7283.

Council of Science Editors:

Clark E. Lie Algebra Representation Theory. [Masters Thesis]. East Carolina University; 2019. Available from: http://hdl.handle.net/10342/7283


Virginia Tech

25. Shaplin, Richard Martin III. Spherical Elements in the Affine Yokonuma-Hecke Algebra.

Degree: MS, Mathematics, 2020, Virginia Tech

 The Yokonuma-Hecke Algebra-module is a vector space over a particular field. Acting on vectors from the module by any element of the Yokonuma-Hecke Algebra corresponds… (more)

Subjects/Keywords: Affine Yokonuma–Hecke Algebras; Spherical Elements

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shaplin, R. M. I. (2020). Spherical Elements in the Affine Yokonuma-Hecke Algebra. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/99307

Chicago Manual of Style (16th Edition):

Shaplin, Richard Martin III. “Spherical Elements in the Affine Yokonuma-Hecke Algebra.” 2020. Masters Thesis, Virginia Tech. Accessed September 21, 2020. http://hdl.handle.net/10919/99307.

MLA Handbook (7th Edition):

Shaplin, Richard Martin III. “Spherical Elements in the Affine Yokonuma-Hecke Algebra.” 2020. Web. 21 Sep 2020.

Vancouver:

Shaplin RMI. Spherical Elements in the Affine Yokonuma-Hecke Algebra. [Internet] [Masters thesis]. Virginia Tech; 2020. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10919/99307.

Council of Science Editors:

Shaplin RMI. Spherical Elements in the Affine Yokonuma-Hecke Algebra. [Masters Thesis]. Virginia Tech; 2020. Available from: http://hdl.handle.net/10919/99307


Queens University

26. Aguilar, Cesar. Local controllability of affine distributions .

Degree: Mathematics and Statistics, 2010, Queens University

 In this thesis, we develop a feedback-invariant theory of local controllability for affine distributions. We begin by developing an unexplored notion in control theory that… (more)

Subjects/Keywords: nonlinear control theory ; local controllability ; affine distribution ; jet bundles ; control-affine systems ; Lie bracket ; high-order tangent vector

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aguilar, C. (2010). Local controllability of affine distributions . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/5386

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Aguilar, Cesar. “Local controllability of affine distributions .” 2010. Thesis, Queens University. Accessed September 21, 2020. http://hdl.handle.net/1974/5386.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Aguilar, Cesar. “Local controllability of affine distributions .” 2010. Web. 21 Sep 2020.

Vancouver:

Aguilar C. Local controllability of affine distributions . [Internet] [Thesis]. Queens University; 2010. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/1974/5386.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Aguilar C. Local controllability of affine distributions . [Thesis]. Queens University; 2010. Available from: http://hdl.handle.net/1974/5386

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oklahoma

27. Munteanu, Marius Ionut. One-dimensional Riemannian foliations on the Heisenberg group.

Degree: PhD, Department of Mathematics, 2002, University of Oklahoma

 As noted in the literature, the result mentioned above remains valid on Gamma\H3, where Gamma is a lattice in H3. We give another proof for… (more)

Subjects/Keywords: Geodesics (Mathematics); Lie algebras.; Mathematics.; Geometry, Riemannian.; Vector spaces.; Geometry, Differential.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Munteanu, M. I. (2002). One-dimensional Riemannian foliations on the Heisenberg group. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/528

Chicago Manual of Style (16th Edition):

Munteanu, Marius Ionut. “One-dimensional Riemannian foliations on the Heisenberg group.” 2002. Doctoral Dissertation, University of Oklahoma. Accessed September 21, 2020. http://hdl.handle.net/11244/528.

MLA Handbook (7th Edition):

Munteanu, Marius Ionut. “One-dimensional Riemannian foliations on the Heisenberg group.” 2002. Web. 21 Sep 2020.

Vancouver:

Munteanu MI. One-dimensional Riemannian foliations on the Heisenberg group. [Internet] [Doctoral dissertation]. University of Oklahoma; 2002. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/11244/528.

Council of Science Editors:

Munteanu MI. One-dimensional Riemannian foliations on the Heisenberg group. [Doctoral Dissertation]. University of Oklahoma; 2002. Available from: http://hdl.handle.net/11244/528


The Ohio State University

28. Wong, Kwok Chi. Restricted representations of classical lie algebras of prime characteristics.

Degree: PhD, Graduate School, 1973, The Ohio State University

Subjects/Keywords: Mathematics; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wong, K. C. (1973). Restricted representations of classical lie algebras of prime characteristics. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486746723829676

Chicago Manual of Style (16th Edition):

Wong, Kwok Chi. “Restricted representations of classical lie algebras of prime characteristics.” 1973. Doctoral Dissertation, The Ohio State University. Accessed September 21, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486746723829676.

MLA Handbook (7th Edition):

Wong, Kwok Chi. “Restricted representations of classical lie algebras of prime characteristics.” 1973. Web. 21 Sep 2020.

Vancouver:

Wong KC. Restricted representations of classical lie algebras of prime characteristics. [Internet] [Doctoral dissertation]. The Ohio State University; 1973. [cited 2020 Sep 21]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486746723829676.

Council of Science Editors:

Wong KC. Restricted representations of classical lie algebras of prime characteristics. [Doctoral Dissertation]. The Ohio State University; 1973. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486746723829676


The Ohio State University

29. Ray, Phillip Paul. Classical Kac-Moody algebras in characteristic p.

Degree: PhD, Graduate School, 1987, The Ohio State University

Subjects/Keywords: Mathematics; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ray, P. P. (1987). Classical Kac-Moody algebras in characteristic p. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148733599290202

Chicago Manual of Style (16th Edition):

Ray, Phillip Paul. “Classical Kac-Moody algebras in characteristic p.” 1987. Doctoral Dissertation, The Ohio State University. Accessed September 21, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu148733599290202.

MLA Handbook (7th Edition):

Ray, Phillip Paul. “Classical Kac-Moody algebras in characteristic p.” 1987. Web. 21 Sep 2020.

Vancouver:

Ray PP. Classical Kac-Moody algebras in characteristic p. [Internet] [Doctoral dissertation]. The Ohio State University; 1987. [cited 2020 Sep 21]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148733599290202.

Council of Science Editors:

Ray PP. Classical Kac-Moody algebras in characteristic p. [Doctoral Dissertation]. The Ohio State University; 1987. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148733599290202


The Ohio State University

30. Ku, Jong-Min. Irreducible subquotients of Verma modules over Kac-Moody Lie algebras.

Degree: PhD, Graduate School, 1984, The Ohio State University

Subjects/Keywords: Mathematics; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ku, J. (1984). Irreducible subquotients of Verma modules over Kac-Moody Lie algebras. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256380164851

Chicago Manual of Style (16th Edition):

Ku, Jong-Min. “Irreducible subquotients of Verma modules over Kac-Moody Lie algebras.” 1984. Doctoral Dissertation, The Ohio State University. Accessed September 21, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256380164851.

MLA Handbook (7th Edition):

Ku, Jong-Min. “Irreducible subquotients of Verma modules over Kac-Moody Lie algebras.” 1984. Web. 21 Sep 2020.

Vancouver:

Ku J. Irreducible subquotients of Verma modules over Kac-Moody Lie algebras. [Internet] [Doctoral dissertation]. The Ohio State University; 1984. [cited 2020 Sep 21]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256380164851.

Council of Science Editors:

Ku J. Irreducible subquotients of Verma modules over Kac-Moody Lie algebras. [Doctoral Dissertation]. The Ohio State University; 1984. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256380164851

[1] [2] [3] [4] [5] … [464]

.