Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

Language: English

You searched for subject:(Affine Lie algebras). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Muthiah, Dinakar. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.

Degree: PhD, Mathematics, 2013, Brown University

 The theory of Mirkovic-Vilonen (MV) cycles and polytopes associated to a complex reductive group G has proven to be a rich source of structures related… (more)

Subjects/Keywords: affine Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Muthiah, D. (2013). Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:320617/

Chicago Manual of Style (16th Edition):

Muthiah, Dinakar. “Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.” 2013. Doctoral Dissertation, Brown University. Accessed September 22, 2020. https://repository.library.brown.edu/studio/item/bdr:320617/.

MLA Handbook (7th Edition):

Muthiah, Dinakar. “Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.” 2013. Web. 22 Sep 2020.

Vancouver:

Muthiah D. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. [Internet] [Doctoral dissertation]. Brown University; 2013. [cited 2020 Sep 22]. Available from: https://repository.library.brown.edu/studio/item/bdr:320617/.

Council of Science Editors:

Muthiah D. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. [Doctoral Dissertation]. Brown University; 2013. Available from: https://repository.library.brown.edu/studio/item/bdr:320617/


Rutgers University

2. Nandi, Debajyoti, 1980-. Partition identities arising from the standard A(2)2-modules of level 4.

Degree: PhD, Mathematics, 2014, Rutgers University

In this dissertation, we propose a set of new partition identities, arising from a twisted vertex operator construction of the level 4 standard modules for… (more)

Subjects/Keywords: Affine algebraic groups; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nandi, Debajyoti, 1. (2014). Partition identities arising from the standard A(2)2-modules of level 4. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/45379/

Chicago Manual of Style (16th Edition):

Nandi, Debajyoti, 1980-. “Partition identities arising from the standard A(2)2-modules of level 4.” 2014. Doctoral Dissertation, Rutgers University. Accessed September 22, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/45379/.

MLA Handbook (7th Edition):

Nandi, Debajyoti, 1980-. “Partition identities arising from the standard A(2)2-modules of level 4.” 2014. Web. 22 Sep 2020.

Vancouver:

Nandi, Debajyoti 1. Partition identities arising from the standard A(2)2-modules of level 4. [Internet] [Doctoral dissertation]. Rutgers University; 2014. [cited 2020 Sep 22]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45379/.

Council of Science Editors:

Nandi, Debajyoti 1. Partition identities arising from the standard A(2)2-modules of level 4. [Doctoral Dissertation]. Rutgers University; 2014. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45379/

3. Shi, Song. Imaginary Whittaker Modules For Extended Affine Lie Algebras.

Degree: PhD, Mathematics & Statistics, 2016, York University

 We classify irreducible Whittaker modules for generalized Heisenberg Lie algebra t and irreducible Whittaker modules for Lie algebra t obtained by adjoining m degree derivations… (more)

Subjects/Keywords: Mathematics; Extended affine Lie algebras; Imaginary Whittaker modules; Generalized Heisenberg Lie algebra; Affine Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shi, S. (2016). Imaginary Whittaker Modules For Extended Affine Lie Algebras. (Doctoral Dissertation). York University. Retrieved from http://hdl.handle.net/10315/32319

Chicago Manual of Style (16th Edition):

Shi, Song. “Imaginary Whittaker Modules For Extended Affine Lie Algebras.” 2016. Doctoral Dissertation, York University. Accessed September 22, 2020. http://hdl.handle.net/10315/32319.

MLA Handbook (7th Edition):

Shi, Song. “Imaginary Whittaker Modules For Extended Affine Lie Algebras.” 2016. Web. 22 Sep 2020.

Vancouver:

Shi S. Imaginary Whittaker Modules For Extended Affine Lie Algebras. [Internet] [Doctoral dissertation]. York University; 2016. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/10315/32319.

Council of Science Editors:

Shi S. Imaginary Whittaker Modules For Extended Affine Lie Algebras. [Doctoral Dissertation]. York University; 2016. Available from: http://hdl.handle.net/10315/32319

4. Barucchieri, Bianca. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.

Degree: Docteur es, Mathématiques Pures, 2019, Bordeaux

Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte… (more)

Subjects/Keywords: Variétés affines; Groupes cristallographiques; Variétés Hermite-Lorentz; Algèbres de Lie nilpotentes; Affine manifolds; Crystallographic groups; Hermite-Lorentz manifolds; Nilpotent Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barucchieri, B. (2019). Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2019BORD0153

Chicago Manual of Style (16th Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Doctoral Dissertation, Bordeaux. Accessed September 22, 2020. http://www.theses.fr/2019BORD0153.

MLA Handbook (7th Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Web. 22 Sep 2020.

Vancouver:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Internet] [Doctoral dissertation]. Bordeaux; 2019. [cited 2020 Sep 22]. Available from: http://www.theses.fr/2019BORD0153.

Council of Science Editors:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Doctoral Dissertation]. Bordeaux; 2019. Available from: http://www.theses.fr/2019BORD0153


University of Saskatchewan

5. Azam, Saeid. Extended affine lie algebras and extended affine weyl groups.

Degree: 1997, University of Saskatchewan

 This thesis is about extended affine Lie algebras and extended affine Weyl groups. In Chapter I, we provide the basic knowledge necessary for the study… (more)

Subjects/Keywords: mathematics; Lie algebra; extended affine Lie algebras; extended affine Weyl groups; automorphism

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Azam, S. (1997). Extended affine lie algebras and extended affine weyl groups. (Thesis). University of Saskatchewan. Retrieved from http://hdl.handle.net/10388/etd-10212004-001324

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Azam, Saeid. “Extended affine lie algebras and extended affine weyl groups.” 1997. Thesis, University of Saskatchewan. Accessed September 22, 2020. http://hdl.handle.net/10388/etd-10212004-001324.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Azam, Saeid. “Extended affine lie algebras and extended affine weyl groups.” 1997. Web. 22 Sep 2020.

Vancouver:

Azam S. Extended affine lie algebras and extended affine weyl groups. [Internet] [Thesis]. University of Saskatchewan; 1997. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/10388/etd-10212004-001324.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Azam S. Extended affine lie algebras and extended affine weyl groups. [Thesis]. University of Saskatchewan; 1997. Available from: http://hdl.handle.net/10388/etd-10212004-001324

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Du crest de villeneuve, Ann. Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies.

Degree: Docteur es, Mathématiques, 2018, Angers

Cette thèse traite du calcul et des applications des fonctions tau des hiérarchies de Drinfeld–Sokolov introduites en 1984. Les hiérarchies de Drinfeld–Sokolov sont des suites… (more)

Subjects/Keywords: Algèbres de Lie affines; Hiérarchies de Drinfeld–Sokolov; Fonctions tau; Hiérarchie de double ramification; Integrable systems; Affine Lie algebras; Drinfeld–Sokolov hierarchies; Tau functions; Double ramification hierarchies; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Du crest de villeneuve, A. (2018). Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies. (Doctoral Dissertation). Angers. Retrieved from http://www.theses.fr/2018ANGE0019

Chicago Manual of Style (16th Edition):

Du crest de villeneuve, Ann. “Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies.” 2018. Doctoral Dissertation, Angers. Accessed September 22, 2020. http://www.theses.fr/2018ANGE0019.

MLA Handbook (7th Edition):

Du crest de villeneuve, Ann. “Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies.” 2018. Web. 22 Sep 2020.

Vancouver:

Du crest de villeneuve A. Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies. [Internet] [Doctoral dissertation]. Angers; 2018. [cited 2020 Sep 22]. Available from: http://www.theses.fr/2018ANGE0019.

Council of Science Editors:

Du crest de villeneuve A. Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies. [Doctoral Dissertation]. Angers; 2018. Available from: http://www.theses.fr/2018ANGE0019

.