Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Aeroelastic wing design). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Vanneste, Thomas. Développement d'un outil de modélisation aéroélastique du vol battu de l'insecte appliqué à la conception d'un nano-drone résonant : Aeroelastic framework of insect-like flapping-wing applied to the design of a resonant nano air vehicle.

Degree: Docteur es, Mécanique, 2013, Valenciennes

Développer, à partir de zéro, un drone imitant le vol battu de l'insecte est une tâche ambitieuse et ardue pour un designer en raison du manque de savoir-faire en la matière. Pour en accélérer le développement pendant les phases de design préliminaires, un outil modélisant les phénomènes aéroélastiques du vol de l'insecte est un véritable atout pour le designer et est le sujet de cette thèse. Le cœur de cet outil est un solveur éléments finis 'structure' couplé, en utilisant une approche par tranche, à un modèle aérodynamique quasi-statique du vol de l'insecte prenant en compte la flexibilité de l'aile, à la fois selon l'envergure et la corde, mais aussi ses grands déplacements. L'ensemble est conçu de manière à contenir le coût de calcul tout en étant assez modulaire pour s'adapter à un large panel d'applications. Afin de valider l'intégralité de cet outil, un processus en deux étapes a été entrepris avec d'abord une approche numérique et ensuite une validation expérimentale grâce à un banc de caractérisation dédié. Les résultats du modèle concordent de manière satisfaisante dans les deux cas, capturant l'amortissement dû aux forces aérodynamiques, et ouvrent ainsi la voie à son utilisation pour le design de drones à ailes battantes. Pour démontrer l'intérêt de cette approche lors des phases de design préliminaires, deux applications sur un nano-drone résonant sont réalisées: la définition d'une stratégie d'actionnement efficace et la recherche d'une géométrie d'aile potentiellement intéressante d'un point de vue aérodynamique, en couplant l'outil de modélisation à un algorithme génétique. Les résultats obtenus sont cohérents avec ceux trouvés dans la nature et sont en cours d'implémentation sur le drone.

Developing insect-like flapping-wing drones from scratch is an ambitious and arduous task for designers due to a lack of well-established know-how. To speed up the development of such vehicles through the preliminary design stage, a framework modeling the aeroelastic phenomena encountered in insect flight is an asset and is the subject of this thesis. Its kernel is a FEM based structural solver coupled in a blade-element approach to a quasi-steady aerodynamic model of insect flight accounting for the wing flexibility, both in the spanwise and in the chordwise direction, and for its large displacement. The complete framework is devised so as to maintain the computation load low while being modular enough for a wide range of applications. To validate the overall aeroelastic framework, a two-steps process has been undertaken with in one hand numerical studies and in the other hand experimental ones acquired on a dedicated test bench. The framework computation agrees satisfactorily, capturing the damping due to the aerodynamic force, and thus paves the way for preliminary design applications of a flapping-wing vehicle. To exhibit the capabilities of the framework as a preliminary design tool, two applications on a resonant nano air vehicle are performed: the definition of an efficient actuation strategy and the…

Advisors/Committee Members: Cattan, Eric (thesis director), Grondel, Sébastien (thesis director), Paquet, Jean-Bernard (thesis director).

Subjects/Keywords: Aile battante; Modèle aéroélastique; Aile souple; Optimisation; Outil de dimensionnement; Flapping-wing; Aeroelastic framework; Flexible wing; Optimization; Design tool

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vanneste, T. (2013). Développement d'un outil de modélisation aéroélastique du vol battu de l'insecte appliqué à la conception d'un nano-drone résonant : Aeroelastic framework of insect-like flapping-wing applied to the design of a resonant nano air vehicle. (Doctoral Dissertation). Valenciennes. Retrieved from http://www.theses.fr/2013VALE0021

Chicago Manual of Style (16th Edition):

Vanneste, Thomas. “Développement d'un outil de modélisation aéroélastique du vol battu de l'insecte appliqué à la conception d'un nano-drone résonant : Aeroelastic framework of insect-like flapping-wing applied to the design of a resonant nano air vehicle.” 2013. Doctoral Dissertation, Valenciennes. Accessed April 18, 2021. http://www.theses.fr/2013VALE0021.

MLA Handbook (7th Edition):

Vanneste, Thomas. “Développement d'un outil de modélisation aéroélastique du vol battu de l'insecte appliqué à la conception d'un nano-drone résonant : Aeroelastic framework of insect-like flapping-wing applied to the design of a resonant nano air vehicle.” 2013. Web. 18 Apr 2021.

Vancouver:

Vanneste T. Développement d'un outil de modélisation aéroélastique du vol battu de l'insecte appliqué à la conception d'un nano-drone résonant : Aeroelastic framework of insect-like flapping-wing applied to the design of a resonant nano air vehicle. [Internet] [Doctoral dissertation]. Valenciennes; 2013. [cited 2021 Apr 18]. Available from: http://www.theses.fr/2013VALE0021.

Council of Science Editors:

Vanneste T. Développement d'un outil de modélisation aéroélastique du vol battu de l'insecte appliqué à la conception d'un nano-drone résonant : Aeroelastic framework of insect-like flapping-wing applied to the design of a resonant nano air vehicle. [Doctoral Dissertation]. Valenciennes; 2013. Available from: http://www.theses.fr/2013VALE0021

2. Brooks, Timothy. Design Optimization of Flexible Aircraft Wings Using Tow-steered Composites.

Degree: PhD, Aerospace Engineering, 2018, University of Michigan

In the last 30 years since their introduction into aerospace applications, composites have become increasingly used, making up as much as 50% of modern aircraft by weight. Considering this fact, it is surprising that most aircraft today are only scratching the surface of the true potential of composite technology with traditional uniaxial fibers. With the introduction of automatic fiber placing machines, the fiber direction in laminae is now allowed to be steered spatially throughout each layer. This process is known as composite tow steering and has been shown to have improved performance over its uniaxial fiber counterpart with no additional weight penalty. With modern aircraft moving toward larger and more flexible wing designs, it is reasonable to expect that a tow-steered composite wing structure can be tailored to outperform its unsteered counterpart. However, given the highly coupled nature of the aerodynamics and structural response of the problem it is not obvious nor intuitive to find the composite fiber pattern that would yield an optimal result. High-fidelity aerostructural solvers have been proven effective for accurately capturing the trade-offs between relevant design disciplines for such aircraft. Such solvers allow for the performance of tow-steered wing structures to be analyzed in great detail. By complementing these solvers with gradient-based numerical optimization, high dimensional design spaces can be explored relatively efficiently. Such methods make it possible to quantify the maximum benefits offered by tow-steered wing structures. In this thesis, a number of aerostructural optimizations are performed to compare the performance of aluminum, conventional composite and tow-steered composite wing designs. For these studies, a set of benchmark aeroelastic aircraft models are developed based on the NASA Common Research Model. A design parameterization scheme, constitutive model, and relevant manufacturing constraints are then developed for tow-steered structures. A fuel burn minimization is then performed for a tow-steered and conventional composite wing design. When applied to a Boeing-777-type aircraft wing, tow steering is found to offer improvements of up to 2.4% in fuel savings and 24% in wing weight under the limited set of design constraints, relative to the optimized conventional composite design. This improvement was found to be due to a combination of improved passive aeroelastic tailoring and local strength tailoring in high-stressed regions in the tow-steered structure. For a higher aspect ratio wing design improvements of up to 1.5% and 14% in fuel savings and wing weight are found. Finally, the trade-off between structural weight and fuel burn performance is explored through a Pareto front study. This study compares the performance of an aluminum, conventional and tow-steered composite wing. In this study, it is found that when wing planform is free to vary, tow-steering offers improvements of up to 1.5% in fuel savings for a fuel-burn-optimized design and 1.6% in total… Advisors/Committee Members: Martins, Joaquim R R A (committee member), Saitou, Kazuhiro (committee member), Cesnik, Carlos E (committee member), Sundararaghavan, Veera (committee member).

Subjects/Keywords: Multi-disciplinary design optimization; Tow-steered composites; Aeroelastic wing design; Aerospace Engineering; Engineering

…7 Early example of aeroelastic tailoring in wooden propeller design. Adapted from U.S… …3.7 Inverse design iteration history for uCRM-9 wing jig. . . . . . . . . . . . . . 3.8… …aeroelastic aircraft models are developed based on the NASA Common Research Model. A design… …conventional composite wing design. When applied to a Boeing-777-type aircraft wing, tow steering is… …ratio wing design improvements of up to 1.5% and 14% in fuel savings and wing weight are found… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brooks, T. (2018). Design Optimization of Flexible Aircraft Wings Using Tow-steered Composites. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/145830

Chicago Manual of Style (16th Edition):

Brooks, Timothy. “Design Optimization of Flexible Aircraft Wings Using Tow-steered Composites.” 2018. Doctoral Dissertation, University of Michigan. Accessed April 18, 2021. http://hdl.handle.net/2027.42/145830.

MLA Handbook (7th Edition):

Brooks, Timothy. “Design Optimization of Flexible Aircraft Wings Using Tow-steered Composites.” 2018. Web. 18 Apr 2021.

Vancouver:

Brooks T. Design Optimization of Flexible Aircraft Wings Using Tow-steered Composites. [Internet] [Doctoral dissertation]. University of Michigan; 2018. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2027.42/145830.

Council of Science Editors:

Brooks T. Design Optimization of Flexible Aircraft Wings Using Tow-steered Composites. [Doctoral Dissertation]. University of Michigan; 2018. Available from: http://hdl.handle.net/2027.42/145830


University of Florida

3. Love,Robert D. An Experimentally-Based Procedure for Aeroservoelastic Model Identification and Control Synthesis for Morphing and Flapping Wings.

Degree: PhD, Aerospace Engineering - Mechanical and Aerospace Engineering, 2011, University of Florida

Morphing and flapping wings are enabling technologies for vehicles of the future. Vehicles with morphing and flapping wings will have greater mission capability and flexibility thereby enabling more autonomy, will be substantially more maneuverable, will be able to fly maintaining stability in the presence of larger gusts and will weigh less than current vehicles by eliminating repetitious control effectors. The dynamics of morphing and flapping wing vehicles are inherently aeroservoelastic since the interaction of aerodynamics, structural flexibility, and structural dynamics are critical to performance and will be altered by any control effectors. However, current aeroservoelastic modeling and control strategies are not sufficient to realize the full range of benefits offered by wings which change shape substantially. Most vehicles attempt to eliminate aeroservoelastic dependencies with aircraft design or decrease their effects with some form of control. Yet these aeroservoelastic dependences may be harnessed to provide substantial benefits for morphing and flapping wings. Advisors/Committee Members: Lind, Richard C (committee chair), Ukeiley, Lawrence S. (committee member), Ifju, Peter (committee member), Ho, Jeffrey (committee member).

Subjects/Keywords: Aerodynamics; Aircraft; Aircraft wings; Dynamic structural analysis; Kinematics; Modeling; Piezoelectric actuators; Sensors; Signals; Structural deflection; aeroelastic  – aeroelasticity  – aeroservoelastic  – aeroservoelasticity  – aerospace  – aircraft  – analysis  – basis  – control  – design  – dynamics  – experimental  – feedback  – feedforward  – flapping  – flexibility  – flexible  – flight  – frequency  – hydroelasticity  – identification  – interdisciplinary  – mav  – mechanics  – model  – morphing  – optimization  – performance  – periodic  – processing  – robustness  – sensor  – shape  – signal  – structural  – time  – uav  – wing  – wings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

D, L. (2011). An Experimentally-Based Procedure for Aeroservoelastic Model Identification and Control Synthesis for Morphing and Flapping Wings. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0043309

Chicago Manual of Style (16th Edition):

D, Love,Robert. “An Experimentally-Based Procedure for Aeroservoelastic Model Identification and Control Synthesis for Morphing and Flapping Wings.” 2011. Doctoral Dissertation, University of Florida. Accessed April 18, 2021. https://ufdc.ufl.edu/UFE0043309.

MLA Handbook (7th Edition):

D, Love,Robert. “An Experimentally-Based Procedure for Aeroservoelastic Model Identification and Control Synthesis for Morphing and Flapping Wings.” 2011. Web. 18 Apr 2021.

Vancouver:

D L. An Experimentally-Based Procedure for Aeroservoelastic Model Identification and Control Synthesis for Morphing and Flapping Wings. [Internet] [Doctoral dissertation]. University of Florida; 2011. [cited 2021 Apr 18]. Available from: https://ufdc.ufl.edu/UFE0043309.

Council of Science Editors:

D L. An Experimentally-Based Procedure for Aeroservoelastic Model Identification and Control Synthesis for Morphing and Flapping Wings. [Doctoral Dissertation]. University of Florida; 2011. Available from: https://ufdc.ufl.edu/UFE0043309

.