Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Accient Tolerant Fuel). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. George, Nathan Michael. Assessment of Reactivity Equivalence for Enhanced Accident Tolerant Fuels in Light Water Reactors.

Degree: 2015, University of Tennessee – Knoxville

The neutronic behavior of accident tolerant fuel (ATF) concepts was simulated in light water reactors (LWRs) to establish design parameters to match reactivity lifetime requirements of standard UO2 [uranium dioxide]/Zircaloy fuel. The two concepts discussed in this dissertation are fully ceramic micro-encapsulated (FCM) fuel and alternate cladding concepts. To compare the required fuel alterations against standard UO2/Zircaloy fuel, a 2D lattice-physics based reactivity equivalence method was established to estimate excess reactivity at the completion of each weighted batch cycle. In the case of FCM fuel, the uranium-based tristructural isotropic (TRISO) kernel and the surrounding particle layers/matrix material were altered to increase fissile loading. To match the lifetime of an 18-month pressurized water reactor (PWR) cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life (BOL) compared with that of a standard UO2 rod. When investigating alternate cladding concepts, cladding walls were thinned with the outer diameter unchanged, so the pellet volume and enrichment of UO2 fuel were increased. In the PWR study, a cladding thickness of 350 μm [micrometer] was simulated. Austenitic stainless steels required an increase of about 0.5 wt % enrichment to match fuel cycle requirements, while the required increase in enrichment for FeCrAl was about 0.1%. Due to the presence of the channel box, the boiling water reactor (BWR) ATF designs required additional fissile material. With the FeCrAl cladding and channel box thicknesses halved, it was estimated that an average enrichment increase of 0.6% would be required. Verification of the 2D reactivity results was performed with a 3D full-core parametric study of a representative BWR demonstrating the applicability of the 2D reactivity equivalence method for the cases herein studied. A LWR optimization code (LWROpt) was used to determine loading (LP) and control blade (CB) patterns for the ATF BWR concepts, so to help regain thermal and reactivity margins. Fuel performance was investigated with the BISON-CASL code using linear heat rate data from the optimized full-core results. The analysis demonstrated that varying power histories between FeCrAl and Zircaloy cladding greatly affect thermal expansion and centerline temperatures of the fuel rods.

Subjects/Keywords: Accient Tolerant Fuel; Nuclear; Neutronics; Light Water Reactor; Optimization; Nuclear Engineering

…TRISO Accident tolerant fuel Buffer layer Beginning of cycle Beginning of life Boiling water… …for Fuel Reactivity Calculations .................................... 25 Table III. Various… …48 Table IX: Fuel performance geometry specifications… …52 Table IX. Fuel Cycle Reactivity Models… …59 Table X. Cycle Reactivity Difference [𝛥kcore] for Alternate Fuel Cladding… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

George, N. M. (2015). Assessment of Reactivity Equivalence for Enhanced Accident Tolerant Fuels in Light Water Reactors. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/3333

Chicago Manual of Style (16th Edition):

George, Nathan Michael. “Assessment of Reactivity Equivalence for Enhanced Accident Tolerant Fuels in Light Water Reactors.” 2015. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed January 23, 2019. https://trace.tennessee.edu/utk_graddiss/3333.

MLA Handbook (7th Edition):

George, Nathan Michael. “Assessment of Reactivity Equivalence for Enhanced Accident Tolerant Fuels in Light Water Reactors.” 2015. Web. 23 Jan 2019.

Vancouver:

George NM. Assessment of Reactivity Equivalence for Enhanced Accident Tolerant Fuels in Light Water Reactors. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2015. [cited 2019 Jan 23]. Available from: https://trace.tennessee.edu/utk_graddiss/3333.

Council of Science Editors:

George NM. Assessment of Reactivity Equivalence for Enhanced Accident Tolerant Fuels in Light Water Reactors. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2015. Available from: https://trace.tennessee.edu/utk_graddiss/3333

.