Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(ALGEBRAISCHE KURVEN ALGEBRAISCHE GEOMETRIE ). Showing records 1 – 30 of 468 total matches.

[1] [2] [3] [4] [5] … [16]

Search Limiters

Last 2 Years | English Only

Languages

Country

▼ Search Limiters


ETH Zürich

1. Borek, Thomas. Arakelov theory of noncommutative arithmetic curves and surfaces.

Degree: 2006, ETH Zürich

Subjects/Keywords: NICHTKOMMUTATIVE GEOMETRIE; ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE FLÄCHEN (ALGEBRAISCHE GEOMETRIE); NONCOMMUTATIVE GEOMETRY; ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ALGEBRAIC SURFACES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Borek, T. (2006). Arakelov theory of noncommutative arithmetic curves and surfaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/149521

Chicago Manual of Style (16th Edition):

Borek, Thomas. “Arakelov theory of noncommutative arithmetic curves and surfaces.” 2006. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/149521.

MLA Handbook (7th Edition):

Borek, Thomas. “Arakelov theory of noncommutative arithmetic curves and surfaces.” 2006. Web. 31 Oct 2020.

Vancouver:

Borek T. Arakelov theory of noncommutative arithmetic curves and surfaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2006. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/149521.

Council of Science Editors:

Borek T. Arakelov theory of noncommutative arithmetic curves and surfaces. [Doctoral Dissertation]. ETH Zürich; 2006. Available from: http://hdl.handle.net/20.500.11850/149521


Ruhr Universität Bochum

2. Herold, Gottfried. Applications of classical algebraic geometry to cryptography.

Degree: 2014, Ruhr Universität Bochum

 Diese Arbeit behandelt Anwendungen klassischer algebraischer Geometrie auf Fragestellungen der Kryptographie. Der erste Teil der Arbeit behandelt dabei das Polly Cracker with Noise Verschlüsselungsverfahren (Albrecht… (more)

Subjects/Keywords: Algebraische Geometrie; Algebraische Methode; Kryptologie; Ideal (Mathematik); Public-Key-Kryptosystem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herold, G. (2014). Applications of classical algebraic geometry to cryptography. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-43359

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Herold, Gottfried. “Applications of classical algebraic geometry to cryptography.” 2014. Thesis, Ruhr Universität Bochum. Accessed October 31, 2020. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-43359.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Herold, Gottfried. “Applications of classical algebraic geometry to cryptography.” 2014. Web. 31 Oct 2020.

Vancouver:

Herold G. Applications of classical algebraic geometry to cryptography. [Internet] [Thesis]. Ruhr Universität Bochum; 2014. [cited 2020 Oct 31]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-43359.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Herold G. Applications of classical algebraic geometry to cryptography. [Thesis]. Ruhr Universität Bochum; 2014. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-43359

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Ruhr Universität Bochum

3. Perling, Markus. Cohomology vanishing and exceptional sequences.

Degree: 2009, Ruhr Universität Bochum

 Gegenstand dieser Arbeit ist die Untersuchung von Kohomologieverschwindung von invertierbaren Garben auf torischen Varietäten und ihre Anwendung auf die Konstruktion von streng exzeptionellen Folgen auf… (more)

Subjects/Keywords: Algebraische Geometrie; Torische Varietät; Abgeleitete Kategorie; Kohomologie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perling, M. (2009). Cohomology vanishing and exceptional sequences. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-27159

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perling, Markus. “Cohomology vanishing and exceptional sequences.” 2009. Thesis, Ruhr Universität Bochum. Accessed October 31, 2020. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-27159.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perling, Markus. “Cohomology vanishing and exceptional sequences.” 2009. Web. 31 Oct 2020.

Vancouver:

Perling M. Cohomology vanishing and exceptional sequences. [Internet] [Thesis]. Ruhr Universität Bochum; 2009. [cited 2020 Oct 31]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-27159.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perling M. Cohomology vanishing and exceptional sequences. [Thesis]. Ruhr Universität Bochum; 2009. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-27159

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

4. Janda, Felix. Relations in the tautological ring.

Degree: 2015, ETH Zürich

Subjects/Keywords: MODULRÄUME (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE ZYKLEN (ALGEBRAISCHE GEOMETRIE); RINGTHEORIE (ALGEBRA); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); MODULI SPACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ALGEBRAIC CYCLES (ALGEBRAIC GEOMETRY); RING THEORY (ALGEBRA); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Janda, F. (2015). Relations in the tautological ring. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155246

Chicago Manual of Style (16th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/155246.

MLA Handbook (7th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Web. 31 Oct 2020.

Vancouver:

Janda F. Relations in the tautological ring. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/155246.

Council of Science Editors:

Janda F. Relations in the tautological ring. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155246


ETH Zürich

5. Oberdieck, Georg. The enumerative geometry of the Hilbert schemes of points of a K3 surface.

Degree: 2015, ETH Zürich

Subjects/Keywords: HILBERTSCHEMEN (ALGEBRAISCHE GEOMETRIE); K3-FLÄCHEN + ENRIQUES-FLÄCHEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); HILBERT SCHEMES (ALGEBRAIC GEOMETRY); K3 SURFACES + ENRIQUES SURFACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oberdieck, G. (2015). The enumerative geometry of the Hilbert schemes of points of a K3 surface. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155291

Chicago Manual of Style (16th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/155291.

MLA Handbook (7th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Web. 31 Oct 2020.

Vancouver:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/155291.

Council of Science Editors:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155291


University of Vienna

6. Perlega, Stefan. A new proof for the embedded resolution of surface singularities in arbitrary characteristic.

Degree: 2017, University of Vienna

In dieser Arbeit wird ein neuer Beweis für die eingebettete Auflösung von Flächensingularitäten in einem dreidimensionalen glatten Umgebungsraum über einem algebraisch abgeschlossenen Grundkörper beliebiger Charakteristik… (more)

Subjects/Keywords: 31.51 Algebraische Geometrie; Algebraische Geometrie / Kommutative Algebra / Auflösung von Singularitäten / Positive Charakteristik; Algebraic geometry / Commutative algebra / Resolution of singularities / Positive characteristic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perlega, S. (2017). A new proof for the embedded resolution of surface singularities in arbitrary characteristic. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/49160/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perlega, Stefan. “A new proof for the embedded resolution of surface singularities in arbitrary characteristic.” 2017. Thesis, University of Vienna. Accessed October 31, 2020. http://othes.univie.ac.at/49160/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perlega, Stefan. “A new proof for the embedded resolution of surface singularities in arbitrary characteristic.” 2017. Web. 31 Oct 2020.

Vancouver:

Perlega S. A new proof for the embedded resolution of surface singularities in arbitrary characteristic. [Internet] [Thesis]. University of Vienna; 2017. [cited 2020 Oct 31]. Available from: http://othes.univie.ac.at/49160/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perlega S. A new proof for the embedded resolution of surface singularities in arbitrary characteristic. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/49160/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

7. Pauli, Laurent. Sur les polaires des courbes planes, des surfaces et des hypersurfaces algébriques.

Degree: 1936, ETH Zürich

Subjects/Keywords: EBENE KURVEN (DIFFERENTIALGEOMETRIE); ALGEBRAISCHE FLÄCHEN (ALGEBRAISCHE GEOMETRIE); HYPERFLÄCHEN (RIEMANNSCHE RÄUME); PLANE CURVES (DIFFERENTIAL GEOMETRY); ALGEBRAIC SURFACES (ALGEBRAIC GEOMETRY); HYPERSURFACES (RIEMANNIAN SPACES); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pauli, L. (1936). Sur les polaires des courbes planes, des surfaces et des hypersurfaces algébriques. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135274

Chicago Manual of Style (16th Edition):

Pauli, Laurent. “Sur les polaires des courbes planes, des surfaces et des hypersurfaces algébriques.” 1936. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/135274.

MLA Handbook (7th Edition):

Pauli, Laurent. “Sur les polaires des courbes planes, des surfaces et des hypersurfaces algébriques.” 1936. Web. 31 Oct 2020.

Vancouver:

Pauli L. Sur les polaires des courbes planes, des surfaces et des hypersurfaces algébriques. [Internet] [Doctoral dissertation]. ETH Zürich; 1936. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/135274.

Council of Science Editors:

Pauli L. Sur les polaires des courbes planes, des surfaces et des hypersurfaces algébriques. [Doctoral Dissertation]. ETH Zürich; 1936. Available from: http://hdl.handle.net/20.500.11850/135274


Ruhr Universität Bochum

8. Herpel, Sebastian. On the smoothness of centralizers in reductive groups.

Degree: 2011, Ruhr Universität Bochum

 Wir untersuchen in dieser Arbeit ein Inseparabilitaetsphaenomen, das bei algebraischen Gruppen in positiver Charakteristik auftritt. Es handelt sich dabei um die Diskrepanz der Dimensionen von… (more)

Subjects/Keywords: Algebra; Algebraische Geometrie; Gruppentheorie; Positive Charakteristik; Glattheit (Mathematik)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herpel, S. (2011). On the smoothness of centralizers in reductive groups. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-32493

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Herpel, Sebastian. “On the smoothness of centralizers in reductive groups.” 2011. Thesis, Ruhr Universität Bochum. Accessed October 31, 2020. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-32493.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Herpel, Sebastian. “On the smoothness of centralizers in reductive groups.” 2011. Web. 31 Oct 2020.

Vancouver:

Herpel S. On the smoothness of centralizers in reductive groups. [Internet] [Thesis]. Ruhr Universität Bochum; 2011. [cited 2020 Oct 31]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-32493.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Herpel S. On the smoothness of centralizers in reductive groups. [Thesis]. Ruhr Universität Bochum; 2011. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-32493

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

9. Känel, Rafael von. An effective proof of the hyperelliptic Shafarevich conjecture and applications.

Degree: 2011, ETH Zürich

Subjects/Keywords: HYPERELLIPTISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); HYPERELLIPTIC CURVES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Känel, R. v. (2011). An effective proof of the hyperelliptic Shafarevich conjecture and applications. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152554

Chicago Manual of Style (16th Edition):

Känel, Rafael von. “An effective proof of the hyperelliptic Shafarevich conjecture and applications.” 2011. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/152554.

MLA Handbook (7th Edition):

Känel, Rafael von. “An effective proof of the hyperelliptic Shafarevich conjecture and applications.” 2011. Web. 31 Oct 2020.

Vancouver:

Känel Rv. An effective proof of the hyperelliptic Shafarevich conjecture and applications. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/152554.

Council of Science Editors:

Känel Rv. An effective proof of the hyperelliptic Shafarevich conjecture and applications. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/152554


ETH Zürich

10. Wang, Ming-Xi. Rational points and transcendental points.

Degree: 2011, ETH Zürich

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); ELLIPTIC FUNCTIONS + ELLIPTIC INTEGRALS (MATHEMATICAL ANALYSIS); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ELLIPTISCHE FUNKTIONEN + ELLIPTISCHE INTEGRALE (ANALYSIS); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); ENDOMORPHISM RINGS (ALGEBRA); ENDOMORPHISMENRINGE (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, M. (2011). Rational points and transcendental points. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/41776

Chicago Manual of Style (16th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/41776.

MLA Handbook (7th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Web. 31 Oct 2020.

Vancouver:

Wang M. Rational points and transcendental points. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/41776.

Council of Science Editors:

Wang M. Rational points and transcendental points. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/41776


University of Vienna

11. Kröncke, Klaus. Comparison theorems in Riemannian geometry.

Degree: 2010, University of Vienna

Im ersten Kapitel führen wir zunächst Grundkonzepte der Krümmung ein. Danach fassen wir die wichtigsten Resultate aus der Überlagerungstheorie zusammen. Zuletzt beschreiben wir Mannigfaltigkeiten konstanter… (more)

Subjects/Keywords: 31.52 Differentialgeometrie; 31.55 Globale Analysis; 31.61 Algebraische Topologie; Globale Riemannsche Geometrie; Global Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kröncke, K. (2010). Comparison theorems in Riemannian geometry. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Thesis, University of Vienna. Accessed October 31, 2020. http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Web. 31 Oct 2020.

Vancouver:

Kröncke K. Comparison theorems in Riemannian geometry. [Internet] [Thesis]. University of Vienna; 2010. [cited 2020 Oct 31]. Available from: http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kröncke K. Comparison theorems in Riemannian geometry. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

12. Bojko, Arkadij. Stability conditions on quivers and semistable non-commutative curve counting.

Degree: 2018, University of Vienna

Der Begriff von Stabilitätkondizionen auf triangulierten Kategorien wurde von T. Bridgeland in "Stability conditions on triangulated categories" eingeführt. Zusätzlich haben wir mit den nicht-kommutativen Kurven,… (more)

Subjects/Keywords: 31.27 Kategorientheorie; 31.12 Kombinatorik, Graphentheorie; 31.29 Algebra: Sonstiges; 31.50 Geometrie: Allgemeines; 31.23 Ideale, Ringe, Moduln, Algebren; 31.60 Topologie: Allgemeines; 31.25 Lineare Algebra, multilineare Algebra; 31.61 Algebraische Topologie; triangulierte Kategorien / derivierte Kategorien / Stabilitätbedingungen / Stabilitätkondizionen / nicht-kommutative / Kurven / semistabil / Representationen von Köchern; triangulated categories / derived categories / stability conditions / non-commutative curve counting / non-commutative / semistable / representations of quivers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bojko, A. (2018). Stability conditions on quivers and semistable non-commutative curve counting. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/52820/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Thesis, University of Vienna. Accessed October 31, 2020. http://othes.univie.ac.at/52820/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Web. 31 Oct 2020.

Vancouver:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Internet] [Thesis]. University of Vienna; 2018. [cited 2020 Oct 31]. Available from: http://othes.univie.ac.at/52820/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Thesis]. University of Vienna; 2018. Available from: http://othes.univie.ac.at/52820/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Ruhr Universität Bochum

13. Schruff, Stephan. Exaktheit von Faserfunktoren.

Degree: 2007, Ruhr Universität Bochum

 Ziel der Arbeit ist, Resultate von Teissier (1980) und Hsieh-Lipman (2004/06) über simultane Normalisierungen in einen allgemeineren Kontext einzubetten. Dazu wird der Begriff des Faserfunktors… (more)

Subjects/Keywords: Algebraische Geometrie; Komplexe Geometrie; Kategorie (Mathematik); Normalisierung; Hilbert-Polynom

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schruff, S. (2007). Exaktheit von Faserfunktoren. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-18361

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schruff, Stephan. “Exaktheit von Faserfunktoren.” 2007. Thesis, Ruhr Universität Bochum. Accessed October 31, 2020. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-18361.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schruff, Stephan. “Exaktheit von Faserfunktoren.” 2007. Web. 31 Oct 2020.

Vancouver:

Schruff S. Exaktheit von Faserfunktoren. [Internet] [Thesis]. Ruhr Universität Bochum; 2007. [cited 2020 Oct 31]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-18361.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schruff S. Exaktheit von Faserfunktoren. [Thesis]. Ruhr Universität Bochum; 2007. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-18361

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Mosch, Peter. On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups.

Degree: 2014, Ruhr Universität Bochum

 In der vorliegenden Dissertation wird für eine maximale unipotente Untergruppe U einer einfachen algebraischen Gruppe über einem algebraisch abgeschlossenen Körper die Separabilität von Bahnabbildungen und… (more)

Subjects/Keywords: Algebraische Gruppe; Konjugiertenklasse; Computeralgebra; Sylow-Untergruppe; Algebraische Geometrie

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mosch, P. (2014). On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41936

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mosch, Peter. “On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups.” 2014. Thesis, Ruhr Universität Bochum. Accessed October 31, 2020. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41936.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mosch, Peter. “On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups.” 2014. Web. 31 Oct 2020.

Vancouver:

Mosch P. On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups. [Internet] [Thesis]. Ruhr Universität Bochum; 2014. [cited 2020 Oct 31]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41936.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mosch P. On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups. [Thesis]. Ruhr Universität Bochum; 2014. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41936

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

15. Viada-Aehle, Evelina. Elliptic isogenies and slopes.

Degree: 2001, ETH Zürich

Subjects/Keywords: VEKTORBÜNDEL (DIFFERENTIALGEOMETRIE); DIFFERENTIALGEOMETRIE VON UNTERMANNIGFALTIGKEITEN; ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); ELLIPTISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); VECTOR BUNDLES (DIFFERENTIAL GEOMETRY); DIFFERENTIAL GEOMETRY OF SUBMANIFOLDS; ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); ELLIPTIC CURVES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Viada-Aehle, E. (2001). Elliptic isogenies and slopes. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/145429

Chicago Manual of Style (16th Edition):

Viada-Aehle, Evelina. “Elliptic isogenies and slopes.” 2001. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/145429.

MLA Handbook (7th Edition):

Viada-Aehle, Evelina. “Elliptic isogenies and slopes.” 2001. Web. 31 Oct 2020.

Vancouver:

Viada-Aehle E. Elliptic isogenies and slopes. [Internet] [Doctoral dissertation]. ETH Zürich; 2001. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/145429.

Council of Science Editors:

Viada-Aehle E. Elliptic isogenies and slopes. [Doctoral Dissertation]. ETH Zürich; 2001. Available from: http://hdl.handle.net/20.500.11850/145429


University of Vienna

16. Woblistin, Sebastian. On varieties in power series spaces.

Degree: 2016, University of Vienna

In dieser Arbeit werden verschiedene Aspekte der Geometrie von so genannten arquilen Varietäten, welche die Lösungsmengen Y(f) von impliziten Potenzreihengleichungen f(x,y(x)) = 0 sind, untersucht.… (more)

Subjects/Keywords: 31.23 Ideale, Ringe, Moduln, Algebren; 31.43 Funktionen mit mehreren komplexen Variablen; 31.51 Algebraische Geometrie; Algebraische Geometrie/ Komplexe Analysis / Kommutative Algebra / Unendlichdimensionale Geometrie; Algebraic Geometry/ Complex Analysis / Commutative Algebra / Infinite-dimensional Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Woblistin, S. (2016). On varieties in power series spaces. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/45829/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Woblistin, Sebastian. “On varieties in power series spaces.” 2016. Thesis, University of Vienna. Accessed October 31, 2020. http://othes.univie.ac.at/45829/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Woblistin, Sebastian. “On varieties in power series spaces.” 2016. Web. 31 Oct 2020.

Vancouver:

Woblistin S. On varieties in power series spaces. [Internet] [Thesis]. University of Vienna; 2016. [cited 2020 Oct 31]. Available from: http://othes.univie.ac.at/45829/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Woblistin S. On varieties in power series spaces. [Thesis]. University of Vienna; 2016. Available from: http://othes.univie.ac.at/45829/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Johannes Gutenberg Universität Mainz

17. Labs, Oliver. Hypersurfaces with many singularities.

Degree: 2005, Johannes Gutenberg Universität Mainz

1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten.… (more)

Subjects/Keywords: Algebraische Geometrie, Computer Algebra; algebraic geometry, computer algebra; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Labs, O. (2005). Hypersurfaces with many singularities. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2005/885/

Chicago Manual of Style (16th Edition):

Labs, Oliver. “Hypersurfaces with many singularities.” 2005. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed October 31, 2020. http://ubm.opus.hbz-nrw.de/volltexte/2005/885/.

MLA Handbook (7th Edition):

Labs, Oliver. “Hypersurfaces with many singularities.” 2005. Web. 31 Oct 2020.

Vancouver:

Labs O. Hypersurfaces with many singularities. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2005. [cited 2020 Oct 31]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2005/885/.

Council of Science Editors:

Labs O. Hypersurfaces with many singularities. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2005. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2005/885/


University of Vienna

18. Wagner, Dominique. Studies in resolution of singularities in positive characteristic.

Degree: 2009, University of Vienna

Das Hauptanliegen dieser Dissertation ist es, die auftretenden Phänomene bei der eingebetteten Auflösung von Singularitäten über Körpern mit positiver Charakteristik zu untersuchen. Im ersten Abschnitt… (more)

Subjects/Keywords: 31.51 Algebraische Geometrie; Algebraische Geometrie / Auflösung von Singularitäten / positive Charakteristik / Newton Polyeder; algebraic geometry / resolution of singularities / positive characteristic / Newton polyhedra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wagner, D. (2009). Studies in resolution of singularities in positive characteristic. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/6335/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wagner, Dominique. “Studies in resolution of singularities in positive characteristic.” 2009. Thesis, University of Vienna. Accessed October 31, 2020. http://othes.univie.ac.at/6335/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wagner, Dominique. “Studies in resolution of singularities in positive characteristic.” 2009. Web. 31 Oct 2020.

Vancouver:

Wagner D. Studies in resolution of singularities in positive characteristic. [Internet] [Thesis]. University of Vienna; 2009. [cited 2020 Oct 31]. Available from: http://othes.univie.ac.at/6335/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wagner D. Studies in resolution of singularities in positive characteristic. [Thesis]. University of Vienna; 2009. Available from: http://othes.univie.ac.at/6335/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

19. Grüning, Julius. Lens spaces.

Degree: 2015, University of Vienna

Diese Masterarbeit beschäftigt sich mit Linsenräumen. Ein Linsenraum entsteht als Quotientenraum einer Wirkung einer endlichen zyklischen Gruppe auf eine Sphäre ungerader Dimension. Es werden einige verschiedene Konstruktionen von Linsenräumen besprochen. Außerdem werden die bekannten Homotopie- wie Homöomorphie-Klassifikationsresultate vorgestellt und bewiesen.

Subjects/Keywords: 31.61 Algebraische Topologie; Linsenräume / Linsenraum / algebraische Topologie / Homotopie / Homologie / Homöomorphie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grüning, J. (2015). Lens spaces. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/40559/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Grüning, Julius. “Lens spaces.” 2015. Thesis, University of Vienna. Accessed October 31, 2020. http://othes.univie.ac.at/40559/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Grüning, Julius. “Lens spaces.” 2015. Web. 31 Oct 2020.

Vancouver:

Grüning J. Lens spaces. [Internet] [Thesis]. University of Vienna; 2015. [cited 2020 Oct 31]. Available from: http://othes.univie.ac.at/40559/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Grüning J. Lens spaces. [Thesis]. University of Vienna; 2015. Available from: http://othes.univie.ac.at/40559/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

20. Baum, Walter Robert. Die Nullwegegruppe und ihre Verallgemeinerungen.

Degree: 1953, ETH Zürich

Subjects/Keywords: ALGEBRAISCHE VARIETÄTEN + FASERUNGEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAIC VARIETIES + FIBRATIONS (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baum, W. R. (1953). Die Nullwegegruppe und ihre Verallgemeinerungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132666

Chicago Manual of Style (16th Edition):

Baum, Walter Robert. “Die Nullwegegruppe und ihre Verallgemeinerungen.” 1953. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/132666.

MLA Handbook (7th Edition):

Baum, Walter Robert. “Die Nullwegegruppe und ihre Verallgemeinerungen.” 1953. Web. 31 Oct 2020.

Vancouver:

Baum WR. Die Nullwegegruppe und ihre Verallgemeinerungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1953. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/132666.

Council of Science Editors:

Baum WR. Die Nullwegegruppe und ihre Verallgemeinerungen. [Doctoral Dissertation]. ETH Zürich; 1953. Available from: http://hdl.handle.net/20.500.11850/132666


ETH Zürich

21. Hiltbrunner, Rudolf. Ueber Invarianten von Punktsystemen.

Degree: 1919, ETH Zürich

Subjects/Keywords: INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); INVARIANT THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hiltbrunner, R. (1919). Ueber Invarianten von Punktsystemen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135231

Chicago Manual of Style (16th Edition):

Hiltbrunner, Rudolf. “Ueber Invarianten von Punktsystemen.” 1919. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/135231.

MLA Handbook (7th Edition):

Hiltbrunner, Rudolf. “Ueber Invarianten von Punktsystemen.” 1919. Web. 31 Oct 2020.

Vancouver:

Hiltbrunner R. Ueber Invarianten von Punktsystemen. [Internet] [Doctoral dissertation]. ETH Zürich; 1919. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/135231.

Council of Science Editors:

Hiltbrunner R. Ueber Invarianten von Punktsystemen. [Doctoral Dissertation]. ETH Zürich; 1919. Available from: http://hdl.handle.net/20.500.11850/135231


ETH Zürich

22. Wanner, Ernst. Volle Systeme von Grundinvariantentypen.

Degree: 1926, ETH Zürich

Subjects/Keywords: INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); INVARIANT THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wanner, E. (1926). Volle Systeme von Grundinvariantentypen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135340

Chicago Manual of Style (16th Edition):

Wanner, Ernst. “Volle Systeme von Grundinvariantentypen.” 1926. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/135340.

MLA Handbook (7th Edition):

Wanner, Ernst. “Volle Systeme von Grundinvariantentypen.” 1926. Web. 31 Oct 2020.

Vancouver:

Wanner E. Volle Systeme von Grundinvariantentypen. [Internet] [Doctoral dissertation]. ETH Zürich; 1926. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/135340.

Council of Science Editors:

Wanner E. Volle Systeme von Grundinvariantentypen. [Doctoral Dissertation]. ETH Zürich; 1926. Available from: http://hdl.handle.net/20.500.11850/135340


ETH Zürich

23. Hubschmid, Patrik. André-Oort conjecture for Drinfeld moduli spaces.

Degree: 2011, ETH Zürich

Subjects/Keywords: MODULRÄUME (ALGEBRAISCHE GEOMETRIE); MODULI SPACES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hubschmid, P. (2011). André-Oort conjecture for Drinfeld moduli spaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152726

Chicago Manual of Style (16th Edition):

Hubschmid, Patrik. “André-Oort conjecture for Drinfeld moduli spaces.” 2011. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/152726.

MLA Handbook (7th Edition):

Hubschmid, Patrik. “André-Oort conjecture for Drinfeld moduli spaces.” 2011. Web. 31 Oct 2020.

Vancouver:

Hubschmid P. André-Oort conjecture for Drinfeld moduli spaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/152726.

Council of Science Editors:

Hubschmid P. André-Oort conjecture for Drinfeld moduli spaces. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/152726


ETH Zürich

24. Rovelli, Luca. Explicit equivariant compactification and Riemann-Roch for algebraic groups.

Degree: 2002, ETH Zürich

Subjects/Keywords: RIEMANN-ROCH-THEOREM FÜR ALGEBRAISCHE VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); KOMPAKTIFIZIERUNGEN (TOPOLOGIE); ABELSCHE GRUPPEN (ALGEBRA); ALGEBRAISCHE GRUPPEN (ALGEBRAISCHE GEOMETRIE); FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); RIEMANN-ROCH THEOREM FOR ALGEBRAIC VARIETIES (ALGEBRAIC GEOMETRY); COMPACTIFICATIONS (TOPOLOGY); ABELIAN GROUPS (ALGEBRA); ALGEBRAIC GROUPS (ALGEBRAIC GEOMETRY); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rovelli, L. (2002). Explicit equivariant compactification and Riemann-Roch for algebraic groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146972

Chicago Manual of Style (16th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/146972.

MLA Handbook (7th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Web. 31 Oct 2020.

Vancouver:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/146972.

Council of Science Editors:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146972


ETH Zürich

25. Gubler, Walter Bruno. Basic properties of heights of subvarieties.

Degree: 2002, ETH Zürich

Subjects/Keywords: ANALYTISCHE GEOMETRIE IM PROJEKTIVEN RAUM; ALGEBRAISCHE VARIETÄTEN (PROJEKTIVE GEOMETRIE); ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); ANALYTIC GEOMETRY IN THE PROJECTIVE SPACE; ALGEBRAIC VARIETIES (PROJECTIVE GEOMETRY); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); INTERSECTION THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gubler, W. B. (2002). Basic properties of heights of subvarieties. (Thesis). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/147671

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gubler, Walter Bruno. “Basic properties of heights of subvarieties.” 2002. Thesis, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/147671.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gubler, Walter Bruno. “Basic properties of heights of subvarieties.” 2002. Web. 31 Oct 2020.

Vancouver:

Gubler WB. Basic properties of heights of subvarieties. [Internet] [Thesis]. ETH Zürich; 2002. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/147671.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gubler WB. Basic properties of heights of subvarieties. [Thesis]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/147671

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

26. Portmann, Jürg. Counting integral points on affine homogeneous varieties and Patterson-Sullivan theory.

Degree: 2013, ETH Zürich

Subjects/Keywords: ALGEBRAIC VARIETIES + FIBRATIONS (ALGEBRAIC GEOMETRY); LATTICES (GEOMETRY OF NUMBERS); GITTER (ZAHLENGEOMETRIE); ALGEBRAISCHE VARIETÄTEN + FASERUNGEN (ALGEBRAISCHE GEOMETRIE); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Portmann, J. (2013). Counting integral points on affine homogeneous varieties and Patterson-Sullivan theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/65602

Chicago Manual of Style (16th Edition):

Portmann, Jürg. “Counting integral points on affine homogeneous varieties and Patterson-Sullivan theory.” 2013. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/65602.

MLA Handbook (7th Edition):

Portmann, Jürg. “Counting integral points on affine homogeneous varieties and Patterson-Sullivan theory.” 2013. Web. 31 Oct 2020.

Vancouver:

Portmann J. Counting integral points on affine homogeneous varieties and Patterson-Sullivan theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2013. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/65602.

Council of Science Editors:

Portmann J. Counting integral points on affine homogeneous varieties and Patterson-Sullivan theory. [Doctoral Dissertation]. ETH Zürich; 2013. Available from: http://hdl.handle.net/20.500.11850/65602


ETH Zürich

27. Kundert, Esayas. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.

Degree: 1951, ETH Zürich

Subjects/Keywords: FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); INTERSECTION THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kundert, E. (1951). Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131941

Chicago Manual of Style (16th Edition):

Kundert, Esayas. “Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.” 1951. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/131941.

MLA Handbook (7th Edition):

Kundert, Esayas. “Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.” 1951. Web. 31 Oct 2020.

Vancouver:

Kundert E. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. [Internet] [Doctoral dissertation]. ETH Zürich; 1951. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/131941.

Council of Science Editors:

Kundert E. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. [Doctoral Dissertation]. ETH Zürich; 1951. Available from: http://hdl.handle.net/20.500.11850/131941


University of Vienna

28. Bruschek, Clemens. The linearization principle in infinite dimensional algebraic geometry.

Degree: 2009, University of Vienna

Die vorliegende Dissertation beschäftigt sich mit dem Linearisierungsprinzip in der algebraischen und lokal analytischen Geometrie. Zunächst wird der von Hauser und Müller bewiesene Rangsatz für… (more)

Subjects/Keywords: 31.51 Algebraische Geometrie; 31.23 Ideale, Ringe, Moduln, Algebren; Algebraische Geometrie / Rangsatz / Linearisierung / Approximationssätze / Jet Spaces / Arc Spaces / Potenzreihen / Etale Umgebungen; algebraic geometry / rank theorem / linearization / approximation theorems / jet spaces / arc spaces / power series / etale neighbourhoods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bruschek, C. (2009). The linearization principle in infinite dimensional algebraic geometry. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/6768/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bruschek, Clemens. “The linearization principle in infinite dimensional algebraic geometry.” 2009. Thesis, University of Vienna. Accessed October 31, 2020. http://othes.univie.ac.at/6768/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bruschek, Clemens. “The linearization principle in infinite dimensional algebraic geometry.” 2009. Web. 31 Oct 2020.

Vancouver:

Bruschek C. The linearization principle in infinite dimensional algebraic geometry. [Internet] [Thesis]. University of Vienna; 2009. [cited 2020 Oct 31]. Available from: http://othes.univie.ac.at/6768/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bruschek C. The linearization principle in infinite dimensional algebraic geometry. [Thesis]. University of Vienna; 2009. Available from: http://othes.univie.ac.at/6768/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

29. Georgoulas, Valentina Maria. A differential geometric approach to GIT and stability.

Degree: 2016, ETH Zürich

Subjects/Keywords: ALGEBRAISCHE VARIETÄTEN (PROJEKTIVE GEOMETRIE); REDUZIERBARE GRUPPEN (ALGEBRAISCHE GEOMETRIE); GRUPPENOPERATIONEN (ALGEBRA); HOLOMORPHE VEKTORBÜNDEL (ANALYTISCHE RÄUME); ALGEBRAIC VARIETIES (PROJECTIVE GEOMETRY); REDUCTIVE GROUPS (ALGEBRAIC GEOMETRY); GROUP ACTIONS (ALGEBRA); HOLOMORPHIC VECTOR BUNDLES (ANALYTIC SPACES); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Georgoulas, V. M. (2016). A differential geometric approach to GIT and stability. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155993

Chicago Manual of Style (16th Edition):

Georgoulas, Valentina Maria. “A differential geometric approach to GIT and stability.” 2016. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/155993.

MLA Handbook (7th Edition):

Georgoulas, Valentina Maria. “A differential geometric approach to GIT and stability.” 2016. Web. 31 Oct 2020.

Vancouver:

Georgoulas VM. A differential geometric approach to GIT and stability. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/155993.

Council of Science Editors:

Georgoulas VM. A differential geometric approach to GIT and stability. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/155993


ETH Zürich

30. Rühr, René. Some applications of effective unipotent dynamics.

Degree: 2015, ETH Zürich

Subjects/Keywords: TOPOLOGISCHE ENTROPIE (ANALYSIS); ALGEBRAISCHE GRUPPEN (ALGEBRAISCHE GEOMETRIE); GRUPPENOPERATIONEN (ALGEBRA); INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); WAHRSCHEINLICHKEITSMASSE (ANALYSIS); TOPOLOGICAL ENTROPY (MATHEMATICAL ANALYSIS); ALGEBRAIC GROUPS (ALGEBRAIC GEOMETRY); GROUP ACTIONS (ALGEBRA); INVARIANT THEORY (ALGEBRAIC GEOMETRY); PROBABILITY MEASURES (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rühr, R. (2015). Some applications of effective unipotent dynamics. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155243

Chicago Manual of Style (16th Edition):

Rühr, René. “Some applications of effective unipotent dynamics.” 2015. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/155243.

MLA Handbook (7th Edition):

Rühr, René. “Some applications of effective unipotent dynamics.” 2015. Web. 31 Oct 2020.

Vancouver:

Rühr R. Some applications of effective unipotent dynamics. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/155243.

Council of Science Editors:

Rühr R. Some applications of effective unipotent dynamics. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155243

[1] [2] [3] [4] [5] … [16]

.