Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(ABELSCHE VARIET TEN ABELSCHE SCHEMATA ALGEBRAISCHE GEOMETRIE ). Showing records 1 – 30 of 622 total matches.

[1] [2] [3] [4] [5] … [21]

Search Limiters

Last 2 Years | English Only

Levels

Languages

Country

▼ Search Limiters


ETH Zürich

1. Ziegler, Paul. Arithmetic of Abelian Varieties in Positive Characteristic.

Degree: 2014, ETH Zürich

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ziegler, P. (2014). Arithmetic of Abelian Varieties in Positive Characteristic. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/91890

Chicago Manual of Style (16th Edition):

Ziegler, Paul. “Arithmetic of Abelian Varieties in Positive Characteristic.” 2014. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/91890.

MLA Handbook (7th Edition):

Ziegler, Paul. “Arithmetic of Abelian Varieties in Positive Characteristic.” 2014. Web. 20 Nov 2019.

Vancouver:

Ziegler P. Arithmetic of Abelian Varieties in Positive Characteristic. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/91890.

Council of Science Editors:

Ziegler P. Arithmetic of Abelian Varieties in Positive Characteristic. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/91890


ETH Zürich

2. Gubler, Walter Bruno. Basic properties of heights of subvarieties.

Degree: 2002, ETH Zürich

Subjects/Keywords: ANALYTISCHE GEOMETRIE IM PROJEKTIVEN RAUM; ALGEBRAISCHE VARIETÄTEN (PROJEKTIVE GEOMETRIE); ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); ANALYTIC GEOMETRY IN THE PROJECTIVE SPACE; ALGEBRAIC VARIETIES (PROJECTIVE GEOMETRY); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); INTERSECTION THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gubler, W. B. (2002). Basic properties of heights of subvarieties. (Thesis). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/147671

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gubler, Walter Bruno. “Basic properties of heights of subvarieties.” 2002. Thesis, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/147671.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gubler, Walter Bruno. “Basic properties of heights of subvarieties.” 2002. Web. 20 Nov 2019.

Vancouver:

Gubler WB. Basic properties of heights of subvarieties. [Internet] [Thesis]. ETH Zürich; 2002. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/147671.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gubler WB. Basic properties of heights of subvarieties. [Thesis]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/147671

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

3. Archinard, Natália. Abelian varieties and identities for hypergeometric series.

Degree: 2000, ETH Zürich

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); HYPERGEOMETRISCHE REIHEN UND HYPERGEOMETRISCHE FUNKTIONEN (ANALYSIS); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); HYPERGEOMETRIC SERIES AND HYPERGEOMETRIC FUNCTIONS (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Archinard, N. (2000). Abelian varieties and identities for hypergeometric series. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/144933

Chicago Manual of Style (16th Edition):

Archinard, Natália. “Abelian varieties and identities for hypergeometric series.” 2000. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/144933.

MLA Handbook (7th Edition):

Archinard, Natália. “Abelian varieties and identities for hypergeometric series.” 2000. Web. 20 Nov 2019.

Vancouver:

Archinard N. Abelian varieties and identities for hypergeometric series. [Internet] [Doctoral dissertation]. ETH Zürich; 2000. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/144933.

Council of Science Editors:

Archinard N. Abelian varieties and identities for hypergeometric series. [Doctoral Dissertation]. ETH Zürich; 2000. Available from: http://hdl.handle.net/20.500.11850/144933


ETH Zürich

4. Wang, Ming-Xi. Rational points and transcendental points.

Degree: 2011, ETH Zürich

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); ELLIPTIC FUNCTIONS + ELLIPTIC INTEGRALS (MATHEMATICAL ANALYSIS); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ELLIPTISCHE FUNKTIONEN + ELLIPTISCHE INTEGRALE (ANALYSIS); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); ENDOMORPHISM RINGS (ALGEBRA); ENDOMORPHISMENRINGE (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, M. (2011). Rational points and transcendental points. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/41776

Chicago Manual of Style (16th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/41776.

MLA Handbook (7th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Web. 20 Nov 2019.

Vancouver:

Wang M. Rational points and transcendental points. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/41776.

Council of Science Editors:

Wang M. Rational points and transcendental points. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/41776


ETH Zürich

5. Gubler, Walter Bruno. Höhentheorie.

Degree: 1992, ETH Zürich

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); CHOW-VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); DIOPHANTISCHE APPROXIMATIONEN (ZAHLENTHEORIE); METRISCHE THEORIE DER FUNKTIONEN (ANALYSIS); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); CHOW VARIETIES (ALGEBRAIC GEOMETRY); DIOPHANTINE APPROXIMATIONS (NUMBER THEORY); METRIC THEORY OF FUNCTIONS (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gubler, W. B. (1992). Höhentheorie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/140666

Chicago Manual of Style (16th Edition):

Gubler, Walter Bruno. “Höhentheorie.” 1992. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/140666.

MLA Handbook (7th Edition):

Gubler, Walter Bruno. “Höhentheorie.” 1992. Web. 20 Nov 2019.

Vancouver:

Gubler WB. Höhentheorie. [Internet] [Doctoral dissertation]. ETH Zürich; 1992. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/140666.

Council of Science Editors:

Gubler WB. Höhentheorie. [Doctoral Dissertation]. ETH Zürich; 1992. Available from: http://hdl.handle.net/20.500.11850/140666


ETH Zürich

6. Viada-Aehle, Evelina. Elliptic isogenies and slopes.

Degree: 2001, ETH Zürich

Subjects/Keywords: VEKTORBÜNDEL (DIFFERENTIALGEOMETRIE); DIFFERENTIALGEOMETRIE VON UNTERMANNIGFALTIGKEITEN; ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); ELLIPTISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); VECTOR BUNDLES (DIFFERENTIAL GEOMETRY); DIFFERENTIAL GEOMETRY OF SUBMANIFOLDS; ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); ELLIPTIC CURVES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Viada-Aehle, E. (2001). Elliptic isogenies and slopes. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/145429

Chicago Manual of Style (16th Edition):

Viada-Aehle, Evelina. “Elliptic isogenies and slopes.” 2001. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/145429.

MLA Handbook (7th Edition):

Viada-Aehle, Evelina. “Elliptic isogenies and slopes.” 2001. Web. 20 Nov 2019.

Vancouver:

Viada-Aehle E. Elliptic isogenies and slopes. [Internet] [Doctoral dissertation]. ETH Zürich; 2001. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/145429.

Council of Science Editors:

Viada-Aehle E. Elliptic isogenies and slopes. [Doctoral Dissertation]. ETH Zürich; 2001. Available from: http://hdl.handle.net/20.500.11850/145429


ETH Zürich

7. Rovelli, Luca. Explicit equivariant compactification and Riemann-Roch for algebraic groups.

Degree: 2002, ETH Zürich

Subjects/Keywords: RIEMANN-ROCH-THEOREM FÜR ALGEBRAISCHE VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); KOMPAKTIFIZIERUNGEN (TOPOLOGIE); ABELSCHE GRUPPEN (ALGEBRA); ALGEBRAISCHE GRUPPEN (ALGEBRAISCHE GEOMETRIE); FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); RIEMANN-ROCH THEOREM FOR ALGEBRAIC VARIETIES (ALGEBRAIC GEOMETRY); COMPACTIFICATIONS (TOPOLOGY); ABELIAN GROUPS (ALGEBRA); ALGEBRAIC GROUPS (ALGEBRAIC GEOMETRY); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rovelli, L. (2002). Explicit equivariant compactification and Riemann-Roch for algebraic groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146972

Chicago Manual of Style (16th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/146972.

MLA Handbook (7th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Web. 20 Nov 2019.

Vancouver:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/146972.

Council of Science Editors:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146972


Johannes Gutenberg Universität Mainz

8. Quinones Estrella, Russell Aaron. Algebraische Zyklen auf abelschen Varietäten der Dimension 4 mit Polarisierung von Typ (1,2,2,2).

Degree: 2009, Johannes Gutenberg Universität Mainz

Diese Arbeit besch"aftigt sich mit algebraischen Zyklen auf komplexen abelschen Variet"aten der Dimension 4. Ziel der Arbeit ist ein nicht-triviales Element in Griff3,2(A4) zu konstruieren.… (more)

Subjects/Keywords: Abelsche Varietäten, Zyklen; Abelian varieties, Cycles; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Quinones Estrella, R. A. (2009). Algebraische Zyklen auf abelschen Varietäten der Dimension 4 mit Polarisierung von Typ (1,2,2,2). (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2009/2028/

Chicago Manual of Style (16th Edition):

Quinones Estrella, Russell Aaron. “Algebraische Zyklen auf abelschen Varietäten der Dimension 4 mit Polarisierung von Typ (1,2,2,2).” 2009. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed November 20, 2019. http://ubm.opus.hbz-nrw.de/volltexte/2009/2028/.

MLA Handbook (7th Edition):

Quinones Estrella, Russell Aaron. “Algebraische Zyklen auf abelschen Varietäten der Dimension 4 mit Polarisierung von Typ (1,2,2,2).” 2009. Web. 20 Nov 2019.

Vancouver:

Quinones Estrella RA. Algebraische Zyklen auf abelschen Varietäten der Dimension 4 mit Polarisierung von Typ (1,2,2,2). [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2009. [cited 2019 Nov 20]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2009/2028/.

Council of Science Editors:

Quinones Estrella RA. Algebraische Zyklen auf abelschen Varietäten der Dimension 4 mit Polarisierung von Typ (1,2,2,2). [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2009. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2009/2028/


Johannes Gutenberg Universität Mainz

9. Semmel, Michael. The geometry of Lagrangian fibres.

Degree: 2012, Johannes Gutenberg Universität Mainz

If the generic fibre f−1(c) of a Lagrangian fibration f : X → B on a complex Poisson– variety X is smooth, compact, and connected,… (more)

Subjects/Keywords: Abelsche Varietäten, Integrable Systeme; abelian varieties, integrable systems; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Semmel, M. (2012). The geometry of Lagrangian fibres. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2013/3339/

Chicago Manual of Style (16th Edition):

Semmel, Michael. “The geometry of Lagrangian fibres.” 2012. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed November 20, 2019. http://ubm.opus.hbz-nrw.de/volltexte/2013/3339/.

MLA Handbook (7th Edition):

Semmel, Michael. “The geometry of Lagrangian fibres.” 2012. Web. 20 Nov 2019.

Vancouver:

Semmel M. The geometry of Lagrangian fibres. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2012. [cited 2019 Nov 20]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2013/3339/.

Council of Science Editors:

Semmel M. The geometry of Lagrangian fibres. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2012. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2013/3339/


Ruhr Universität Bochum

10. Perling, Markus. Cohomology vanishing and exceptional sequences.

Degree: 2009, Ruhr Universität Bochum

 Gegenstand dieser Arbeit ist die Untersuchung von Kohomologieverschwindung von invertierbaren Garben auf torischen Varietäten und ihre Anwendung auf die Konstruktion von streng exzeptionellen Folgen auf… (more)

Subjects/Keywords: Algebraische Geometrie; Torische Varietät; Abgeleitete Kategorie; Kohomologie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perling, M. (2009). Cohomology vanishing and exceptional sequences. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-27159

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perling, Markus. “Cohomology vanishing and exceptional sequences.” 2009. Thesis, Ruhr Universität Bochum. Accessed November 20, 2019. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-27159.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perling, Markus. “Cohomology vanishing and exceptional sequences.” 2009. Web. 20 Nov 2019.

Vancouver:

Perling M. Cohomology vanishing and exceptional sequences. [Internet] [Thesis]. Ruhr Universität Bochum; 2009. [cited 2019 Nov 20]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-27159.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perling M. Cohomology vanishing and exceptional sequences. [Thesis]. Ruhr Universität Bochum; 2009. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-27159

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Ruhr Universität Bochum

11. Herold, Gottfried. Applications of classical algebraic geometry to cryptography.

Degree: 2014, Ruhr Universität Bochum

 Diese Arbeit behandelt Anwendungen klassischer algebraischer Geometrie auf Fragestellungen der Kryptographie. Der erste Teil der Arbeit behandelt dabei das Polly Cracker with Noise Verschlüsselungsverfahren (Albrecht… (more)

Subjects/Keywords: Algebraische Geometrie; Algebraische Methode; Kryptologie; Ideal (Mathematik); Public-Key-Kryptosystem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herold, G. (2014). Applications of classical algebraic geometry to cryptography. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-43359

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Herold, Gottfried. “Applications of classical algebraic geometry to cryptography.” 2014. Thesis, Ruhr Universität Bochum. Accessed November 20, 2019. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-43359.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Herold, Gottfried. “Applications of classical algebraic geometry to cryptography.” 2014. Web. 20 Nov 2019.

Vancouver:

Herold G. Applications of classical algebraic geometry to cryptography. [Internet] [Thesis]. Ruhr Universität Bochum; 2014. [cited 2019 Nov 20]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-43359.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Herold G. Applications of classical algebraic geometry to cryptography. [Thesis]. Ruhr Universität Bochum; 2014. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-43359

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

12. Perlega, Stefan. A new proof for the embedded resolution of surface singularities in arbitrary characteristic.

Degree: 2017, University of Vienna

In dieser Arbeit wird ein neuer Beweis für die eingebettete Auflösung von Flächensingularitäten in einem dreidimensionalen glatten Umgebungsraum über einem algebraisch abgeschlossenen Grundkörper beliebiger Charakteristik… (more)

Subjects/Keywords: 31.51 Algebraische Geometrie; Algebraische Geometrie / Kommutative Algebra / Auflösung von Singularitäten / Positive Charakteristik; Algebraic geometry / Commutative algebra / Resolution of singularities / Positive characteristic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perlega, S. (2017). A new proof for the embedded resolution of surface singularities in arbitrary characteristic. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/49160/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perlega, Stefan. “A new proof for the embedded resolution of surface singularities in arbitrary characteristic.” 2017. Thesis, University of Vienna. Accessed November 20, 2019. http://othes.univie.ac.at/49160/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perlega, Stefan. “A new proof for the embedded resolution of surface singularities in arbitrary characteristic.” 2017. Web. 20 Nov 2019.

Vancouver:

Perlega S. A new proof for the embedded resolution of surface singularities in arbitrary characteristic. [Internet] [Thesis]. University of Vienna; 2017. [cited 2019 Nov 20]. Available from: http://othes.univie.ac.at/49160/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perlega S. A new proof for the embedded resolution of surface singularities in arbitrary characteristic. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/49160/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

13. Bühler, Theo. On the algebraic foundation of bounded cohomology.

Degree: 2008, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); ABGELEITETE FUNKTOREN + ABGELEITETE KATEGORIEN (ALGEBRA); ABELSCHE KATEGORIEN (ALGEBRA); MODULN (ALGEBRA); NORMIERTE RÄUME + BANACHRÄUME + HILBERTRÄUME (FUNKTIONALANALYSIS); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); DERIVED FUNCTORS + DERIVED CATEGORIES (ALGEBRA); ABELIAN CATEGORIES (ALGEBRA); MODULES (ALGEBRA); NORMED SPACES + BANACH SPACES + HILBERT SPACES (FUNCTIONAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bühler, T. (2008). On the algebraic foundation of bounded cohomology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/150329

Chicago Manual of Style (16th Edition):

Bühler, Theo. “On the algebraic foundation of bounded cohomology.” 2008. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/150329.

MLA Handbook (7th Edition):

Bühler, Theo. “On the algebraic foundation of bounded cohomology.” 2008. Web. 20 Nov 2019.

Vancouver:

Bühler T. On the algebraic foundation of bounded cohomology. [Internet] [Doctoral dissertation]. ETH Zürich; 2008. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/150329.

Council of Science Editors:

Bühler T. On the algebraic foundation of bounded cohomology. [Doctoral Dissertation]. ETH Zürich; 2008. Available from: http://hdl.handle.net/20.500.11850/150329


Ruhr Universität Bochum

14. Herpel, Sebastian. On the smoothness of centralizers in reductive groups.

Degree: 2011, Ruhr Universität Bochum

 Wir untersuchen in dieser Arbeit ein Inseparabilitaetsphaenomen, das bei algebraischen Gruppen in positiver Charakteristik auftritt. Es handelt sich dabei um die Diskrepanz der Dimensionen von… (more)

Subjects/Keywords: Algebra; Algebraische Geometrie; Gruppentheorie; Positive Charakteristik; Glattheit (Mathematik)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herpel, S. (2011). On the smoothness of centralizers in reductive groups. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-32493

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Herpel, Sebastian. “On the smoothness of centralizers in reductive groups.” 2011. Thesis, Ruhr Universität Bochum. Accessed November 20, 2019. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-32493.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Herpel, Sebastian. “On the smoothness of centralizers in reductive groups.” 2011. Web. 20 Nov 2019.

Vancouver:

Herpel S. On the smoothness of centralizers in reductive groups. [Internet] [Thesis]. Ruhr Universität Bochum; 2011. [cited 2019 Nov 20]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-32493.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Herpel S. On the smoothness of centralizers in reductive groups. [Thesis]. Ruhr Universität Bochum; 2011. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-32493

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

15. Kionke, Steffen Philipp. Zur Arithmetik und Geometrie der SL_2 über Ordnungen in Quaternionenalgebren.

Degree: 2010, University of Vienna

Die vorliegende Arbeit beschäftigt sich mit der speziellen linearen Gruppe SLn(O) über Ordnungen O in Quaternionenalgebren H über dem Körper der rationalen Zahlen, sowie torsionsfreien… (more)

Subjects/Keywords: 31.14 Zahlentheorie; 31.29 Algebra: Sonstiges; 31.52 Differentialgeometrie; Quaternionenalgebra / Ordnungen / Involution / spezielle lineare Gruppe / Fixpunkte / nicht-abelsche Kohomologie; quaternion algebra / orders / involution / special linear group / fixed points / non-abelian cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kionke, S. P. (2010). Zur Arithmetik und Geometrie der SL_2 über Ordnungen in Quaternionenalgebren. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/8427/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kionke, Steffen Philipp. “Zur Arithmetik und Geometrie der SL_2 über Ordnungen in Quaternionenalgebren.” 2010. Thesis, University of Vienna. Accessed November 20, 2019. http://othes.univie.ac.at/8427/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kionke, Steffen Philipp. “Zur Arithmetik und Geometrie der SL_2 über Ordnungen in Quaternionenalgebren.” 2010. Web. 20 Nov 2019.

Vancouver:

Kionke SP. Zur Arithmetik und Geometrie der SL_2 über Ordnungen in Quaternionenalgebren. [Internet] [Thesis]. University of Vienna; 2010. [cited 2019 Nov 20]. Available from: http://othes.univie.ac.at/8427/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kionke SP. Zur Arithmetik und Geometrie der SL_2 über Ordnungen in Quaternionenalgebren. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/8427/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Ruhr Universität Bochum

16. Schruff, Stephan. Exaktheit von Faserfunktoren.

Degree: 2007, Ruhr Universität Bochum

 Ziel der Arbeit ist, Resultate von Teissier (1980) und Hsieh-Lipman (2004/06) über simultane Normalisierungen in einen allgemeineren Kontext einzubetten. Dazu wird der Begriff des Faserfunktors… (more)

Subjects/Keywords: Algebraische Geometrie; Komplexe Geometrie; Kategorie (Mathematik); Normalisierung; Hilbert-Polynom

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schruff, S. (2007). Exaktheit von Faserfunktoren. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-18361

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schruff, Stephan. “Exaktheit von Faserfunktoren.” 2007. Thesis, Ruhr Universität Bochum. Accessed November 20, 2019. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-18361.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schruff, Stephan. “Exaktheit von Faserfunktoren.” 2007. Web. 20 Nov 2019.

Vancouver:

Schruff S. Exaktheit von Faserfunktoren. [Internet] [Thesis]. Ruhr Universität Bochum; 2007. [cited 2019 Nov 20]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-18361.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schruff S. Exaktheit von Faserfunktoren. [Thesis]. Ruhr Universität Bochum; 2007. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-18361

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

17. Kröncke, Klaus. Comparison theorems in Riemannian geometry.

Degree: 2010, University of Vienna

Im ersten Kapitel führen wir zunächst Grundkonzepte der Krümmung ein. Danach fassen wir die wichtigsten Resultate aus der Überlagerungstheorie zusammen. Zuletzt beschreiben wir Mannigfaltigkeiten konstanter… (more)

Subjects/Keywords: 31.52 Differentialgeometrie; 31.55 Globale Analysis; 31.61 Algebraische Topologie; Globale Riemannsche Geometrie; Global Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kröncke, K. (2010). Comparison theorems in Riemannian geometry. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Thesis, University of Vienna. Accessed November 20, 2019. http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Web. 20 Nov 2019.

Vancouver:

Kröncke K. Comparison theorems in Riemannian geometry. [Internet] [Thesis]. University of Vienna; 2010. [cited 2019 Nov 20]. Available from: http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kröncke K. Comparison theorems in Riemannian geometry. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

18. Borek, Thomas. Arakelov theory of noncommutative arithmetic curves and surfaces.

Degree: 2006, ETH Zürich

Subjects/Keywords: NICHTKOMMUTATIVE GEOMETRIE; ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE FLÄCHEN (ALGEBRAISCHE GEOMETRIE); NONCOMMUTATIVE GEOMETRY; ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ALGEBRAIC SURFACES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Borek, T. (2006). Arakelov theory of noncommutative arithmetic curves and surfaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/149521

Chicago Manual of Style (16th Edition):

Borek, Thomas. “Arakelov theory of noncommutative arithmetic curves and surfaces.” 2006. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/149521.

MLA Handbook (7th Edition):

Borek, Thomas. “Arakelov theory of noncommutative arithmetic curves and surfaces.” 2006. Web. 20 Nov 2019.

Vancouver:

Borek T. Arakelov theory of noncommutative arithmetic curves and surfaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2006. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/149521.

Council of Science Editors:

Borek T. Arakelov theory of noncommutative arithmetic curves and surfaces. [Doctoral Dissertation]. ETH Zürich; 2006. Available from: http://hdl.handle.net/20.500.11850/149521


University of Vienna

19. Woblistin, Sebastian. On varieties in power series spaces.

Degree: 2016, University of Vienna

In dieser Arbeit werden verschiedene Aspekte der Geometrie von so genannten arquilen Varietäten, welche die Lösungsmengen Y(f) von impliziten Potenzreihengleichungen f(x,y(x)) = 0 sind, untersucht.… (more)

Subjects/Keywords: 31.23 Ideale, Ringe, Moduln, Algebren; 31.43 Funktionen mit mehreren komplexen Variablen; 31.51 Algebraische Geometrie; Algebraische Geometrie/ Komplexe Analysis / Kommutative Algebra / Unendlichdimensionale Geometrie; Algebraic Geometry/ Complex Analysis / Commutative Algebra / Infinite-dimensional Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Woblistin, S. (2016). On varieties in power series spaces. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/45829/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Woblistin, Sebastian. “On varieties in power series spaces.” 2016. Thesis, University of Vienna. Accessed November 20, 2019. http://othes.univie.ac.at/45829/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Woblistin, Sebastian. “On varieties in power series spaces.” 2016. Web. 20 Nov 2019.

Vancouver:

Woblistin S. On varieties in power series spaces. [Internet] [Thesis]. University of Vienna; 2016. [cited 2019 Nov 20]. Available from: http://othes.univie.ac.at/45829/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Woblistin S. On varieties in power series spaces. [Thesis]. University of Vienna; 2016. Available from: http://othes.univie.ac.at/45829/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. Mosch, Peter. On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups.

Degree: 2014, Ruhr Universität Bochum

 In der vorliegenden Dissertation wird für eine maximale unipotente Untergruppe U einer einfachen algebraischen Gruppe über einem algebraisch abgeschlossenen Körper die Separabilität von Bahnabbildungen und… (more)

Subjects/Keywords: Algebraische Gruppe; Konjugiertenklasse; Computeralgebra; Sylow-Untergruppe; Algebraische Geometrie

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mosch, P. (2014). On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41936

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mosch, Peter. “On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups.” 2014. Thesis, Ruhr Universität Bochum. Accessed November 20, 2019. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41936.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mosch, Peter. “On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups.” 2014. Web. 20 Nov 2019.

Vancouver:

Mosch P. On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups. [Internet] [Thesis]. Ruhr Universität Bochum; 2014. [cited 2019 Nov 20]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41936.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mosch P. On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups. [Thesis]. Ruhr Universität Bochum; 2014. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41936

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Johannes Gutenberg Universität Mainz

21. Labs, Oliver. Hypersurfaces with many singularities.

Degree: 2005, Johannes Gutenberg Universität Mainz

1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten.… (more)

Subjects/Keywords: Algebraische Geometrie, Computer Algebra; algebraic geometry, computer algebra; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Labs, O. (2005). Hypersurfaces with many singularities. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2005/885/

Chicago Manual of Style (16th Edition):

Labs, Oliver. “Hypersurfaces with many singularities.” 2005. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed November 20, 2019. http://ubm.opus.hbz-nrw.de/volltexte/2005/885/.

MLA Handbook (7th Edition):

Labs, Oliver. “Hypersurfaces with many singularities.” 2005. Web. 20 Nov 2019.

Vancouver:

Labs O. Hypersurfaces with many singularities. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2005. [cited 2019 Nov 20]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2005/885/.

Council of Science Editors:

Labs O. Hypersurfaces with many singularities. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2005. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2005/885/


University of Vienna

22. Wagner, Dominique. Studies in resolution of singularities in positive characteristic.

Degree: 2009, University of Vienna

Das Hauptanliegen dieser Dissertation ist es, die auftretenden Phänomene bei der eingebetteten Auflösung von Singularitäten über Körpern mit positiver Charakteristik zu untersuchen. Im ersten Abschnitt… (more)

Subjects/Keywords: 31.51 Algebraische Geometrie; Algebraische Geometrie / Auflösung von Singularitäten / positive Charakteristik / Newton Polyeder; algebraic geometry / resolution of singularities / positive characteristic / Newton polyhedra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wagner, D. (2009). Studies in resolution of singularities in positive characteristic. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/6335/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wagner, Dominique. “Studies in resolution of singularities in positive characteristic.” 2009. Thesis, University of Vienna. Accessed November 20, 2019. http://othes.univie.ac.at/6335/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wagner, Dominique. “Studies in resolution of singularities in positive characteristic.” 2009. Web. 20 Nov 2019.

Vancouver:

Wagner D. Studies in resolution of singularities in positive characteristic. [Internet] [Thesis]. University of Vienna; 2009. [cited 2019 Nov 20]. Available from: http://othes.univie.ac.at/6335/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wagner D. Studies in resolution of singularities in positive characteristic. [Thesis]. University of Vienna; 2009. Available from: http://othes.univie.ac.at/6335/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

23. Ribeiro, Hugo. Lattices des groupes abéliens finis.

Degree: 1949, ETH Zürich

Subjects/Keywords: ABELSCHE GRUPPEN (ALGEBRA); ENDLICHE GRUPPEN (ALGEBRA); UNTERGRUPPENVERBÄNDE (ALGEBRA); ABELIAN GROUPS (ALGEBRA); FINITE GROUPS (ALGEBRA); LATTICES OF SUBGROUPS (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ribeiro, H. (1949). Lattices des groupes abéliens finis. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133375

Chicago Manual of Style (16th Edition):

Ribeiro, Hugo. “Lattices des groupes abéliens finis.” 1949. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/133375.

MLA Handbook (7th Edition):

Ribeiro, Hugo. “Lattices des groupes abéliens finis.” 1949. Web. 20 Nov 2019.

Vancouver:

Ribeiro H. Lattices des groupes abéliens finis. [Internet] [Doctoral dissertation]. ETH Zürich; 1949. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/133375.

Council of Science Editors:

Ribeiro H. Lattices des groupes abéliens finis. [Doctoral Dissertation]. ETH Zürich; 1949. Available from: http://hdl.handle.net/20.500.11850/133375


University of Vienna

24. Lanschützer, Michael. Nonabelian extension of the standard model with classical scale invariance.

Degree: 2018, University of Vienna

Diese Masterarbeit behandelt eine nicht-abelsche, klassisch skaleninvariante Erweiterung des Standardmodells (SM), wobei die Eichgruppe des SM um eine zusätzliche SU(2) Eichsymmetrie erweitert wird. Diese neue… (more)

Subjects/Keywords: 33.19 Theoretische Physik: Sonstiges; 33.56 Elementarteilchenphysik; 33.24 Quantenfeldtheorie; 33.50 Physik der Elementarteilchen und Felder: Allgemeines; Teilchenphysik / Nicht-abelsche SU(2) Erweiterung des Standardmodells / Klassische Skaleninvarianz / Coleman-Weinberg Mechanismus / Gildener-Weinberg Methode / Gildener-Weinberg Bedingung / Effektives Potential; Particle Physics / Nonabelian SU(2) Extension of the Standard Model / Classical Scale Invariance / Coleman-Weinberg Mechanism / Gildener-Weinberg Method / Gildener-Weinberg Condition / Effective Potential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lanschützer, M. (2018). Nonabelian extension of the standard model with classical scale invariance. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/53613/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lanschützer, Michael. “Nonabelian extension of the standard model with classical scale invariance.” 2018. Thesis, University of Vienna. Accessed November 20, 2019. http://othes.univie.ac.at/53613/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lanschützer, Michael. “Nonabelian extension of the standard model with classical scale invariance.” 2018. Web. 20 Nov 2019.

Vancouver:

Lanschützer M. Nonabelian extension of the standard model with classical scale invariance. [Internet] [Thesis]. University of Vienna; 2018. [cited 2019 Nov 20]. Available from: http://othes.univie.ac.at/53613/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lanschützer M. Nonabelian extension of the standard model with classical scale invariance. [Thesis]. University of Vienna; 2018. Available from: http://othes.univie.ac.at/53613/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

25. Janda, Felix. Relations in the tautological ring.

Degree: 2015, ETH Zürich

Subjects/Keywords: MODULRÄUME (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE ZYKLEN (ALGEBRAISCHE GEOMETRIE); RINGTHEORIE (ALGEBRA); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); MODULI SPACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ALGEBRAIC CYCLES (ALGEBRAIC GEOMETRY); RING THEORY (ALGEBRA); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Janda, F. (2015). Relations in the tautological ring. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155246

Chicago Manual of Style (16th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/155246.

MLA Handbook (7th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Web. 20 Nov 2019.

Vancouver:

Janda F. Relations in the tautological ring. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/155246.

Council of Science Editors:

Janda F. Relations in the tautological ring. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155246


ETH Zürich

26. Oberdieck, Georg. The enumerative geometry of the Hilbert schemes of points of a K3 surface.

Degree: 2015, ETH Zürich

Subjects/Keywords: HILBERTSCHEMEN (ALGEBRAISCHE GEOMETRIE); K3-FLÄCHEN + ENRIQUES-FLÄCHEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); HILBERT SCHEMES (ALGEBRAIC GEOMETRY); K3 SURFACES + ENRIQUES SURFACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oberdieck, G. (2015). The enumerative geometry of the Hilbert schemes of points of a K3 surface. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155291

Chicago Manual of Style (16th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/155291.

MLA Handbook (7th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Web. 20 Nov 2019.

Vancouver:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/155291.

Council of Science Editors:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155291


ETH Zürich

27. Wanner, Ernst. Volle Systeme von Grundinvariantentypen.

Degree: 1926, ETH Zürich

Subjects/Keywords: INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); INVARIANT THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wanner, E. (1926). Volle Systeme von Grundinvariantentypen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135340

Chicago Manual of Style (16th Edition):

Wanner, Ernst. “Volle Systeme von Grundinvariantentypen.” 1926. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/135340.

MLA Handbook (7th Edition):

Wanner, Ernst. “Volle Systeme von Grundinvariantentypen.” 1926. Web. 20 Nov 2019.

Vancouver:

Wanner E. Volle Systeme von Grundinvariantentypen. [Internet] [Doctoral dissertation]. ETH Zürich; 1926. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/135340.

Council of Science Editors:

Wanner E. Volle Systeme von Grundinvariantentypen. [Doctoral Dissertation]. ETH Zürich; 1926. Available from: http://hdl.handle.net/20.500.11850/135340


ETH Zürich

28. Hiltbrunner, Rudolf. Ueber Invarianten von Punktsystemen.

Degree: 1919, ETH Zürich

Subjects/Keywords: INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); INVARIANT THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hiltbrunner, R. (1919). Ueber Invarianten von Punktsystemen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135231

Chicago Manual of Style (16th Edition):

Hiltbrunner, Rudolf. “Ueber Invarianten von Punktsystemen.” 1919. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/135231.

MLA Handbook (7th Edition):

Hiltbrunner, Rudolf. “Ueber Invarianten von Punktsystemen.” 1919. Web. 20 Nov 2019.

Vancouver:

Hiltbrunner R. Ueber Invarianten von Punktsystemen. [Internet] [Doctoral dissertation]. ETH Zürich; 1919. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/135231.

Council of Science Editors:

Hiltbrunner R. Ueber Invarianten von Punktsystemen. [Doctoral Dissertation]. ETH Zürich; 1919. Available from: http://hdl.handle.net/20.500.11850/135231


ETH Zürich

29. Hubschmid, Patrik. André-Oort conjecture for Drinfeld moduli spaces.

Degree: 2011, ETH Zürich

Subjects/Keywords: MODULRÄUME (ALGEBRAISCHE GEOMETRIE); MODULI SPACES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hubschmid, P. (2011). André-Oort conjecture for Drinfeld moduli spaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152726

Chicago Manual of Style (16th Edition):

Hubschmid, Patrik. “André-Oort conjecture for Drinfeld moduli spaces.” 2011. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/152726.

MLA Handbook (7th Edition):

Hubschmid, Patrik. “André-Oort conjecture for Drinfeld moduli spaces.” 2011. Web. 20 Nov 2019.

Vancouver:

Hubschmid P. André-Oort conjecture for Drinfeld moduli spaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/152726.

Council of Science Editors:

Hubschmid P. André-Oort conjecture for Drinfeld moduli spaces. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/152726


ETH Zürich

30. Baum, Walter Robert. Die Nullwegegruppe und ihre Verallgemeinerungen.

Degree: 1953, ETH Zürich

Subjects/Keywords: ALGEBRAISCHE VARIETÄTEN + FASERUNGEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAIC VARIETIES + FIBRATIONS (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baum, W. R. (1953). Die Nullwegegruppe und ihre Verallgemeinerungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132666

Chicago Manual of Style (16th Edition):

Baum, Walter Robert. “Die Nullwegegruppe und ihre Verallgemeinerungen.” 1953. Doctoral Dissertation, ETH Zürich. Accessed November 20, 2019. http://hdl.handle.net/20.500.11850/132666.

MLA Handbook (7th Edition):

Baum, Walter Robert. “Die Nullwegegruppe und ihre Verallgemeinerungen.” 1953. Web. 20 Nov 2019.

Vancouver:

Baum WR. Die Nullwegegruppe und ihre Verallgemeinerungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1953. [cited 2019 Nov 20]. Available from: http://hdl.handle.net/20.500.11850/132666.

Council of Science Editors:

Baum WR. Die Nullwegegruppe und ihre Verallgemeinerungen. [Doctoral Dissertation]. ETH Zürich; 1953. Available from: http://hdl.handle.net/20.500.11850/132666

[1] [2] [3] [4] [5] … [21]

.