Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(3 manifolds). Showing records 1 – 30 of 39 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


Oklahoma State University

1. Chen, Lizhi. Systolic Freedom of 3-manifolds.

Degree: Mathematics, 2014, Oklahoma State University

 In this thesis, we study the Z2-coefficient homology (1, 2)-systolic freedom of 3-manifolds. In 1994, Bérard-Bergery and Katz proved the Z-coefficient homology (1, 2)-systolic freedom… (more)

Subjects/Keywords: 3-manifolds; semibundle; systolic freedom

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, L. (2014). Systolic Freedom of 3-manifolds. (Thesis). Oklahoma State University. Retrieved from http://hdl.handle.net/11244/14761

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Lizhi. “Systolic Freedom of 3-manifolds.” 2014. Thesis, Oklahoma State University. Accessed March 05, 2021. http://hdl.handle.net/11244/14761.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Lizhi. “Systolic Freedom of 3-manifolds.” 2014. Web. 05 Mar 2021.

Vancouver:

Chen L. Systolic Freedom of 3-manifolds. [Internet] [Thesis]. Oklahoma State University; 2014. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11244/14761.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen L. Systolic Freedom of 3-manifolds. [Thesis]. Oklahoma State University; 2014. Available from: http://hdl.handle.net/11244/14761

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Melbourne

2. Ramanayake, Don Buweneka Shanil. 0-efficient triangulations of Haken 3-manifolds.

Degree: 2015, University of Melbourne

 The thesis constructs 0–efficient triangulations for compact, irreducible, an-annular, orientable, atoroidal, Haken 3–manifolds that are closed or have torus boundary. The triangulations are dual to… (more)

Subjects/Keywords: efficient triangulations; 3-manifold triangulations; 3-manifold topology; Haken 3-manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ramanayake, D. B. S. (2015). 0-efficient triangulations of Haken 3-manifolds. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/59325

Chicago Manual of Style (16th Edition):

Ramanayake, Don Buweneka Shanil. “0-efficient triangulations of Haken 3-manifolds.” 2015. Doctoral Dissertation, University of Melbourne. Accessed March 05, 2021. http://hdl.handle.net/11343/59325.

MLA Handbook (7th Edition):

Ramanayake, Don Buweneka Shanil. “0-efficient triangulations of Haken 3-manifolds.” 2015. Web. 05 Mar 2021.

Vancouver:

Ramanayake DBS. 0-efficient triangulations of Haken 3-manifolds. [Internet] [Doctoral dissertation]. University of Melbourne; 2015. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11343/59325.

Council of Science Editors:

Ramanayake DBS. 0-efficient triangulations of Haken 3-manifolds. [Doctoral Dissertation]. University of Melbourne; 2015. Available from: http://hdl.handle.net/11343/59325


Cornell University

3. Lam, Chor Hang. Homological Stability Of Diffeomorphism Groups Of 3-Manifolds.

Degree: PhD, Mathematics, 2015, Cornell University

 To study the homology of classifying spaces of diffeomorphism groups of compact, orientable 3-manifolds, we use the stabilization map that glues a prime 3-manifold, P… (more)

Subjects/Keywords: homological stability; diffeomorphism groups; 3-manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lam, C. H. (2015). Homological Stability Of Diffeomorphism Groups Of 3-Manifolds. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/39311

Chicago Manual of Style (16th Edition):

Lam, Chor Hang. “Homological Stability Of Diffeomorphism Groups Of 3-Manifolds.” 2015. Doctoral Dissertation, Cornell University. Accessed March 05, 2021. http://hdl.handle.net/1813/39311.

MLA Handbook (7th Edition):

Lam, Chor Hang. “Homological Stability Of Diffeomorphism Groups Of 3-Manifolds.” 2015. Web. 05 Mar 2021.

Vancouver:

Lam CH. Homological Stability Of Diffeomorphism Groups Of 3-Manifolds. [Internet] [Doctoral dissertation]. Cornell University; 2015. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1813/39311.

Council of Science Editors:

Lam CH. Homological Stability Of Diffeomorphism Groups Of 3-Manifolds. [Doctoral Dissertation]. Cornell University; 2015. Available from: http://hdl.handle.net/1813/39311


University of Oxford

4. Wilkes, Gareth. Profinite properties of 3-manifold groups.

Degree: PhD, 2018, University of Oxford

 In this thesis we study the finite quotients of 3-manifold groups, concerning both residual properties of the groups and the properties of the 3-manifolds that… (more)

Subjects/Keywords: 516; Mathematics; Topology; Profinite groups; 3-Manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilkes, G. (2018). Profinite properties of 3-manifold groups. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:bb7bdd91-ab28-4190-9bcd-ff11a43a9e79 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748996

Chicago Manual of Style (16th Edition):

Wilkes, Gareth. “Profinite properties of 3-manifold groups.” 2018. Doctoral Dissertation, University of Oxford. Accessed March 05, 2021. http://ora.ox.ac.uk/objects/uuid:bb7bdd91-ab28-4190-9bcd-ff11a43a9e79 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748996.

MLA Handbook (7th Edition):

Wilkes, Gareth. “Profinite properties of 3-manifold groups.” 2018. Web. 05 Mar 2021.

Vancouver:

Wilkes G. Profinite properties of 3-manifold groups. [Internet] [Doctoral dissertation]. University of Oxford; 2018. [cited 2021 Mar 05]. Available from: http://ora.ox.ac.uk/objects/uuid:bb7bdd91-ab28-4190-9bcd-ff11a43a9e79 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748996.

Council of Science Editors:

Wilkes G. Profinite properties of 3-manifold groups. [Doctoral Dissertation]. University of Oxford; 2018. Available from: http://ora.ox.ac.uk/objects/uuid:bb7bdd91-ab28-4190-9bcd-ff11a43a9e79 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748996


UCLA

5. Lin, Jianfeng. The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications.

Degree: Mathematics, 2016, UCLA

 In this thesis, we define different versions of unfolded Seiberg-Witten Floer spectra for general 3-manifolds. They generalize Manolescu's and Kronheimer-Manolescu's construction of Floer stable homotopy… (more)

Subjects/Keywords: Mathematics; 3-dimensional manifolds; finite dimensisonal approximations; Seiberg-Witten Floer spectrum

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lin, J. (2016). The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/8d29j4p4

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lin, Jianfeng. “The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications.” 2016. Thesis, UCLA. Accessed March 05, 2021. http://www.escholarship.org/uc/item/8d29j4p4.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lin, Jianfeng. “The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications.” 2016. Web. 05 Mar 2021.

Vancouver:

Lin J. The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications. [Internet] [Thesis]. UCLA; 2016. [cited 2021 Mar 05]. Available from: http://www.escholarship.org/uc/item/8d29j4p4.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lin J. The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications. [Thesis]. UCLA; 2016. Available from: http://www.escholarship.org/uc/item/8d29j4p4

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Princeton University

6. Yazdi, Mehdi. On Thurston's Euler class one conjecture .

Degree: PhD, 2017, Princeton University

 In 1976, Thurston proved that taut foliations on closed hyperbolic 3-manifolds have Euler class of norm at most one, and conjectured that, conversely, any Euler… (more)

Subjects/Keywords: 3-manifolds; Euler class; low dimensional Topology; taut foliation; Thurston norm

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yazdi, M. (2017). On Thurston's Euler class one conjecture . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01zg64tp54v

Chicago Manual of Style (16th Edition):

Yazdi, Mehdi. “On Thurston's Euler class one conjecture .” 2017. Doctoral Dissertation, Princeton University. Accessed March 05, 2021. http://arks.princeton.edu/ark:/88435/dsp01zg64tp54v.

MLA Handbook (7th Edition):

Yazdi, Mehdi. “On Thurston's Euler class one conjecture .” 2017. Web. 05 Mar 2021.

Vancouver:

Yazdi M. On Thurston's Euler class one conjecture . [Internet] [Doctoral dissertation]. Princeton University; 2017. [cited 2021 Mar 05]. Available from: http://arks.princeton.edu/ark:/88435/dsp01zg64tp54v.

Council of Science Editors:

Yazdi M. On Thurston's Euler class one conjecture . [Doctoral Dissertation]. Princeton University; 2017. Available from: http://arks.princeton.edu/ark:/88435/dsp01zg64tp54v


Georgia Tech

7. Conway, James. Transverse surgery on knots in contact three-manifolds.

Degree: PhD, Mathematics, 2016, Georgia Tech

 We study the effect of surgery on transverse knots in contact 3-manifolds by examining its effect on open books, the Heegaard Floer contact invariant, and… (more)

Subjects/Keywords: Contact geometry; Geometric topology; Knot theory; 3-manifolds; Topology; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Conway, J. (2016). Transverse surgery on knots in contact three-manifolds. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/55563

Chicago Manual of Style (16th Edition):

Conway, James. “Transverse surgery on knots in contact three-manifolds.” 2016. Doctoral Dissertation, Georgia Tech. Accessed March 05, 2021. http://hdl.handle.net/1853/55563.

MLA Handbook (7th Edition):

Conway, James. “Transverse surgery on knots in contact three-manifolds.” 2016. Web. 05 Mar 2021.

Vancouver:

Conway J. Transverse surgery on knots in contact three-manifolds. [Internet] [Doctoral dissertation]. Georgia Tech; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1853/55563.

Council of Science Editors:

Conway J. Transverse surgery on knots in contact three-manifolds. [Doctoral Dissertation]. Georgia Tech; 2016. Available from: http://hdl.handle.net/1853/55563


Virginia Tech

8. Gartland, Christopher John. Cycle-Free Twisted Face-Pairing 3-Manifolds.

Degree: MS, Mathematics, 2014, Virginia Tech

 In 2-dimensional topology, quotients of polygons by edge-pairings provide a rich source of examples of closed, connected, orientable surfaces. In fact, they provide all such… (more)

Subjects/Keywords: 3-manifolds; plumbing graphs; Seifert fibered spaces; face-pairings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gartland, C. J. (2014). Cycle-Free Twisted Face-Pairing 3-Manifolds. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/48188

Chicago Manual of Style (16th Edition):

Gartland, Christopher John. “Cycle-Free Twisted Face-Pairing 3-Manifolds.” 2014. Masters Thesis, Virginia Tech. Accessed March 05, 2021. http://hdl.handle.net/10919/48188.

MLA Handbook (7th Edition):

Gartland, Christopher John. “Cycle-Free Twisted Face-Pairing 3-Manifolds.” 2014. Web. 05 Mar 2021.

Vancouver:

Gartland CJ. Cycle-Free Twisted Face-Pairing 3-Manifolds. [Internet] [Masters thesis]. Virginia Tech; 2014. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10919/48188.

Council of Science Editors:

Gartland CJ. Cycle-Free Twisted Face-Pairing 3-Manifolds. [Masters Thesis]. Virginia Tech; 2014. Available from: http://hdl.handle.net/10919/48188


Indian Institute of Science

9. Basak, Biplab. Minimal Crystallizations of 3- and 4- Manifolds.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 A simplicial cell complex K is the face poset of a regular CW complex W such that the boundary complex of each cell is isomorphic… (more)

Subjects/Keywords: Manifolds (Mathematics); Crystalizations; Colored Graphs; Lens Spaces; Geometric Topology; Manifold Crystallization; Pseudotriangulations; 3-Manifolds; 4-Manifolds; Combinatorics; Binary Polyhedral Group; Quaternion Spaces; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Basak, B. (2018). Minimal Crystallizations of 3- and 4- Manifolds. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3682

Chicago Manual of Style (16th Edition):

Basak, Biplab. “Minimal Crystallizations of 3- and 4- Manifolds.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed March 05, 2021. http://etd.iisc.ac.in/handle/2005/3682.

MLA Handbook (7th Edition):

Basak, Biplab. “Minimal Crystallizations of 3- and 4- Manifolds.” 2018. Web. 05 Mar 2021.

Vancouver:

Basak B. Minimal Crystallizations of 3- and 4- Manifolds. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Mar 05]. Available from: http://etd.iisc.ac.in/handle/2005/3682.

Council of Science Editors:

Basak B. Minimal Crystallizations of 3- and 4- Manifolds. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3682


Virginia Tech

10. Ackermann, Robert James. Constructing Bitwisted Face Pairing 3-Manifolds.

Degree: MS, Mathematics, 2008, Virginia Tech

 The bitwist construction, originally discovered by Cannon, Floyd, and Parry, gives us a new method for finding face pairing descriptions of 3-manifolds. In this paper,… (more)

Subjects/Keywords: Bitwisted 3-manifolds; Twisted 3-manifolds; Dehn Surgery; face pairings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ackermann, R. J. (2008). Constructing Bitwisted Face Pairing 3-Manifolds. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/32655

Chicago Manual of Style (16th Edition):

Ackermann, Robert James. “Constructing Bitwisted Face Pairing 3-Manifolds.” 2008. Masters Thesis, Virginia Tech. Accessed March 05, 2021. http://hdl.handle.net/10919/32655.

MLA Handbook (7th Edition):

Ackermann, Robert James. “Constructing Bitwisted Face Pairing 3-Manifolds.” 2008. Web. 05 Mar 2021.

Vancouver:

Ackermann RJ. Constructing Bitwisted Face Pairing 3-Manifolds. [Internet] [Masters thesis]. Virginia Tech; 2008. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10919/32655.

Council of Science Editors:

Ackermann RJ. Constructing Bitwisted Face Pairing 3-Manifolds. [Masters Thesis]. Virginia Tech; 2008. Available from: http://hdl.handle.net/10919/32655

11. Teixeira, Aline de Moraes. Subvariedades de ângulo constante em 3-variedades homogêneas.

Degree: Mestrado, Matemática, 2015, University of São Paulo

Um resultado clássico enunciado por M.A. Lancret em 1802 e provado por B. de Saint Venant em 1845 é: uma condição necessária e suficiente para… (more)

Subjects/Keywords: Constant angle surfaces; Homogeneous 3-manifolds; Superfícies de ângulo constante; Variedades homogêneas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Teixeira, A. d. M. (2015). Subvariedades de ângulo constante em 3-variedades homogêneas. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ ;

Chicago Manual of Style (16th Edition):

Teixeira, Aline de Moraes. “Subvariedades de ângulo constante em 3-variedades homogêneas.” 2015. Masters Thesis, University of São Paulo. Accessed March 05, 2021. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ ;.

MLA Handbook (7th Edition):

Teixeira, Aline de Moraes. “Subvariedades de ângulo constante em 3-variedades homogêneas.” 2015. Web. 05 Mar 2021.

Vancouver:

Teixeira AdM. Subvariedades de ângulo constante em 3-variedades homogêneas. [Internet] [Masters thesis]. University of São Paulo; 2015. [cited 2021 Mar 05]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ ;.

Council of Science Editors:

Teixeira AdM. Subvariedades de ângulo constante em 3-variedades homogêneas. [Masters Thesis]. University of São Paulo; 2015. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ ;


Brigham Young University

12. Burton, Stephan Daniel. Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds.

Degree: MS, 2012, Brigham Young University

  Adams conjectured that unknotting tunnels of tunnel number 1 manifolds are always isotopic to a geodesic. We generalize this question to tunnel number n… (more)

Subjects/Keywords: Hyperbolic Geometry; Hyperbolic 3-manifolds; Unknotting Tunnel; Ford Domain; Knot Theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Burton, S. D. (2012). Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4306&context=etd

Chicago Manual of Style (16th Edition):

Burton, Stephan Daniel. “Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds.” 2012. Masters Thesis, Brigham Young University. Accessed March 05, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4306&context=etd.

MLA Handbook (7th Edition):

Burton, Stephan Daniel. “Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds.” 2012. Web. 05 Mar 2021.

Vancouver:

Burton SD. Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds. [Internet] [Masters thesis]. Brigham Young University; 2012. [cited 2021 Mar 05]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4306&context=etd.

Council of Science Editors:

Burton SD. Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds. [Masters Thesis]. Brigham Young University; 2012. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4306&context=etd


Brigham Young University

13. Meilstrup, Mark H. Wild Low-Dimensional Topology and Dynamics.

Degree: PhD, 2010, Brigham Young University

  In this dissertation we discuss various results for spaces that are wild, i.e. not locally simply connected. We first discuss periodic properties of maps… (more)

Subjects/Keywords: Sharkovskii's Theorem; periodic points; solenoids; 3-manifolds; fundamental group; Peano continua; homotopy invariants; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meilstrup, M. H. (2010). Wild Low-Dimensional Topology and Dynamics. (Doctoral Dissertation). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3202&context=etd

Chicago Manual of Style (16th Edition):

Meilstrup, Mark H. “Wild Low-Dimensional Topology and Dynamics.” 2010. Doctoral Dissertation, Brigham Young University. Accessed March 05, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3202&context=etd.

MLA Handbook (7th Edition):

Meilstrup, Mark H. “Wild Low-Dimensional Topology and Dynamics.” 2010. Web. 05 Mar 2021.

Vancouver:

Meilstrup MH. Wild Low-Dimensional Topology and Dynamics. [Internet] [Doctoral dissertation]. Brigham Young University; 2010. [cited 2021 Mar 05]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3202&context=etd.

Council of Science Editors:

Meilstrup MH. Wild Low-Dimensional Topology and Dynamics. [Doctoral Dissertation]. Brigham Young University; 2010. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3202&context=etd


Brigham Young University

14. Lambert, Lee R. A Toolkit for the Construction and Understanding of 3-Manifolds.

Degree: PhD, 2010, Brigham Young University

  Since our world is experienced locally in three-dimensional space, students of mathematics struggle to visualize and understand objects which do not fit into three-dimensional… (more)

Subjects/Keywords: Twist construction; bitwist construction; 3-manifolds; Dehn surgery; Heegaard splitting; Heegaard diagram; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lambert, L. R. (2010). A Toolkit for the Construction and Understanding of 3-Manifolds. (Doctoral Dissertation). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3187&context=etd

Chicago Manual of Style (16th Edition):

Lambert, Lee R. “A Toolkit for the Construction and Understanding of 3-Manifolds.” 2010. Doctoral Dissertation, Brigham Young University. Accessed March 05, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3187&context=etd.

MLA Handbook (7th Edition):

Lambert, Lee R. “A Toolkit for the Construction and Understanding of 3-Manifolds.” 2010. Web. 05 Mar 2021.

Vancouver:

Lambert LR. A Toolkit for the Construction and Understanding of 3-Manifolds. [Internet] [Doctoral dissertation]. Brigham Young University; 2010. [cited 2021 Mar 05]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3187&context=etd.

Council of Science Editors:

Lambert LR. A Toolkit for the Construction and Understanding of 3-Manifolds. [Doctoral Dissertation]. Brigham Young University; 2010. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3187&context=etd


Princeton University

15. Kotelskiy, Artem. Bordered invariants in low-dimensional topology.

Degree: PhD, 2018, Princeton University

 In this thesis we present two projects. In the first project, which covers Chapters 2 and 3, we construct an algebraic version of Lagrangian Floer… (more)

Subjects/Keywords: 3-manifolds; bordered Heegaard Floer theory; Fukaya category; invariants; knots; low-dimensional topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kotelskiy, A. (2018). Bordered invariants in low-dimensional topology. (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01f7623g284

Chicago Manual of Style (16th Edition):

Kotelskiy, Artem. “Bordered invariants in low-dimensional topology. ” 2018. Doctoral Dissertation, Princeton University. Accessed March 05, 2021. http://arks.princeton.edu/ark:/88435/dsp01f7623g284.

MLA Handbook (7th Edition):

Kotelskiy, Artem. “Bordered invariants in low-dimensional topology. ” 2018. Web. 05 Mar 2021.

Vancouver:

Kotelskiy A. Bordered invariants in low-dimensional topology. [Internet] [Doctoral dissertation]. Princeton University; 2018. [cited 2021 Mar 05]. Available from: http://arks.princeton.edu/ark:/88435/dsp01f7623g284.

Council of Science Editors:

Kotelskiy A. Bordered invariants in low-dimensional topology. [Doctoral Dissertation]. Princeton University; 2018. Available from: http://arks.princeton.edu/ark:/88435/dsp01f7623g284


Boston College

16. Krishna, Siddhi. Taut foliations, positive braids, and the L-space conjecture.

Degree: PhD, Mathematics, 2020, Boston College

 We construct taut foliations in every closed 3-manifold obtained by r-framed Dehn surgery along a positive 3-braid knot K in S3, where r < 2g(K)-1… (more)

Subjects/Keywords: 3-manifolds; Dehn surgery; geometric topology; knots and links; low-dimensional topology; taut foliations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Krishna, S. (2020). Taut foliations, positive braids, and the L-space conjecture. (Doctoral Dissertation). Boston College. Retrieved from http://dlib.bc.edu/islandora/object/bc-ir:108731

Chicago Manual of Style (16th Edition):

Krishna, Siddhi. “Taut foliations, positive braids, and the L-space conjecture.” 2020. Doctoral Dissertation, Boston College. Accessed March 05, 2021. http://dlib.bc.edu/islandora/object/bc-ir:108731.

MLA Handbook (7th Edition):

Krishna, Siddhi. “Taut foliations, positive braids, and the L-space conjecture.” 2020. Web. 05 Mar 2021.

Vancouver:

Krishna S. Taut foliations, positive braids, and the L-space conjecture. [Internet] [Doctoral dissertation]. Boston College; 2020. [cited 2021 Mar 05]. Available from: http://dlib.bc.edu/islandora/object/bc-ir:108731.

Council of Science Editors:

Krishna S. Taut foliations, positive braids, and the L-space conjecture. [Doctoral Dissertation]. Boston College; 2020. Available from: http://dlib.bc.edu/islandora/object/bc-ir:108731


Massey University

17. Zhang, Qingxiang. Two elliptic generator Kleinian groups.

Degree: PhD, Mathematics, 2010, Massey University

 This thesis studies the discreteness of Kleinian groups and the geometry of their associated orbit spaces: hyperbolic 3-manifolds and 3-orbifolds. Thurston's geometrization theorem states that… (more)

Subjects/Keywords: Kleinian groups; Hyperbolic 3-manifolds and 3-orbifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, Q. (2010). Two elliptic generator Kleinian groups. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/2044

Chicago Manual of Style (16th Edition):

Zhang, Qingxiang. “Two elliptic generator Kleinian groups.” 2010. Doctoral Dissertation, Massey University. Accessed March 05, 2021. http://hdl.handle.net/10179/2044.

MLA Handbook (7th Edition):

Zhang, Qingxiang. “Two elliptic generator Kleinian groups.” 2010. Web. 05 Mar 2021.

Vancouver:

Zhang Q. Two elliptic generator Kleinian groups. [Internet] [Doctoral dissertation]. Massey University; 2010. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10179/2044.

Council of Science Editors:

Zhang Q. Two elliptic generator Kleinian groups. [Doctoral Dissertation]. Massey University; 2010. Available from: http://hdl.handle.net/10179/2044

18. Didier Lins, Lauro. BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces .

Degree: 2007, Universidade Federal de Pernambuco

 Um blink é um grafo plano onde cada aresta ou é vermelha ou é verde. Um espaço 3D ou, simplesmente, um espaço é uma variedade… (more)

Subjects/Keywords: Topology; Closed connected oriented 3-manifolds; Plane graphs; Spaces; Graph encoded manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Didier Lins, L. (2007). BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces . (Thesis). Universidade Federal de Pernambuco. Retrieved from http://repositorio.ufpe.br/handle/123456789/7085

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Didier Lins, Lauro. “BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces .” 2007. Thesis, Universidade Federal de Pernambuco. Accessed March 05, 2021. http://repositorio.ufpe.br/handle/123456789/7085.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Didier Lins, Lauro. “BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces .” 2007. Web. 05 Mar 2021.

Vancouver:

Didier Lins L. BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces . [Internet] [Thesis]. Universidade Federal de Pernambuco; 2007. [cited 2021 Mar 05]. Available from: http://repositorio.ufpe.br/handle/123456789/7085.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Didier Lins L. BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces . [Thesis]. Universidade Federal de Pernambuco; 2007. Available from: http://repositorio.ufpe.br/handle/123456789/7085

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Liu, Yi. Nonzero degree maps between three dimensional manifolds.

Degree: Mathematics, 2012, University of California – Berkeley

 The main result of this dissertation shows that every orientable closed 3-manifold admits a nonzero degree map onto at most finitely many homeomorphically distinct non-geometric… (more)

Subjects/Keywords: Mathematics; 3-manifolds; nonzero degree maps

…guidance in these years. He led me into the world of 3-manifolds, and shared all his ideas during… …finiteness associated with nonzero degree maps between 3-manifolds, from the viewpoint of… …geometrization. For convenience, we often stay in the piecewise linear category of 3-manifolds for… …orientable closed 3-manifolds. For an integer d > 0, we say that M d-dominates N if there is a map… …from the essential case of closed 3-manifolds, so we shall not consider dominations relative… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, Y. (2012). Nonzero degree maps between three dimensional manifolds. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/0jj5791w

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Liu, Yi. “Nonzero degree maps between three dimensional manifolds.” 2012. Thesis, University of California – Berkeley. Accessed March 05, 2021. http://www.escholarship.org/uc/item/0jj5791w.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Liu, Yi. “Nonzero degree maps between three dimensional manifolds.” 2012. Web. 05 Mar 2021.

Vancouver:

Liu Y. Nonzero degree maps between three dimensional manifolds. [Internet] [Thesis]. University of California – Berkeley; 2012. [cited 2021 Mar 05]. Available from: http://www.escholarship.org/uc/item/0jj5791w.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Liu Y. Nonzero degree maps between three dimensional manifolds. [Thesis]. University of California – Berkeley; 2012. Available from: http://www.escholarship.org/uc/item/0jj5791w

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. Lee, Michelle Dongeun. Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds.

Degree: PhD, Mathematics, 2012, University of Michigan

 Let M be a compact orientable hyperbolizable 3-manifold. In this thesis we study the action of the group of outer automorphisms of the fundamental group… (more)

Subjects/Keywords: Character Varieties; Hyperbolic 3-manifolds; Mathematics; Science

…generalization of Teichm¨ uller space to hyperbolic 3-manifolds, namely when π is the fundamental group… …3-manifolds homotopy equivalent to M . The deformation space AH(M ) is well… …hyperbolic 3-manifolds: twisted interval bundles and compression bodies. 1.1 Main Results In… …II we review some well-known theory of hyperbolic 3-manifolds and prove some elementary but… …Section 2.1, we review the background material on hyperbolic 3-manifolds that we will need (… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, M. D. (2012). Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/94050

Chicago Manual of Style (16th Edition):

Lee, Michelle Dongeun. “Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds.” 2012. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/94050.

MLA Handbook (7th Edition):

Lee, Michelle Dongeun. “Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds.” 2012. Web. 05 Mar 2021.

Vancouver:

Lee MD. Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds. [Internet] [Doctoral dissertation]. University of Michigan; 2012. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/94050.

Council of Science Editors:

Lee MD. Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds. [Doctoral Dissertation]. University of Michigan; 2012. Available from: http://hdl.handle.net/2027.42/94050

21. Renardy, David. Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary.

Degree: PhD, Mathematics, 2016, University of Michigan

 Let M be a compact, hyperbolizable 3-manifold with boundary and let AH(M) denote the space of discrete faithful representations of the fundamental group of M… (more)

Subjects/Keywords: Kleinian Groups; Hyperbolic 3-manifolds; Mathematics; Science

…hyperbolic 3-manifolds except for finitely many choices of p and q. We make use of the Hyperbolic… …toroidal component in its boundary. We use hyperbolic Dehn filling to construct 3-manifolds Mn0… …guarantees that all ρ in AH(M ) yield hyperbolic 3-manifolds homeomorphic to the interior… …incompressible boundary 3-manifolds. We also give some other indications as to the complexity of the… …x29; is uniformized by Γ. Thurston conjectured in the 1970’s that all compact 3-manifolds… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Renardy, D. (2016). Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/133206

Chicago Manual of Style (16th Edition):

Renardy, David. “Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary.” 2016. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/133206.

MLA Handbook (7th Edition):

Renardy, David. “Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary.” 2016. Web. 05 Mar 2021.

Vancouver:

Renardy D. Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary. [Internet] [Doctoral dissertation]. University of Michigan; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/133206.

Council of Science Editors:

Renardy D. Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary. [Doctoral Dissertation]. University of Michigan; 2016. Available from: http://hdl.handle.net/2027.42/133206


University of Colorado

22. Olikara, Zubin Philip. Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques.

Degree: PhD, Aerospace Engineering Sciences, 2016, University of Colorado

 Many astrodynamical systems exhibit both ordered and chaotic motion. The invariant manifold structure organizes these behaviors and is a valuable tool for the design of… (more)

Subjects/Keywords: Gauss-Legendre collocation; heteroclinic connections; invariant manifolds; quasi-periodic orbits; restricted 3-body problem; spacecraft trajectory design; Aerospace Engineering; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Olikara, Z. P. (2016). Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/asen_gradetds/144

Chicago Manual of Style (16th Edition):

Olikara, Zubin Philip. “Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques.” 2016. Doctoral Dissertation, University of Colorado. Accessed March 05, 2021. https://scholar.colorado.edu/asen_gradetds/144.

MLA Handbook (7th Edition):

Olikara, Zubin Philip. “Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques.” 2016. Web. 05 Mar 2021.

Vancouver:

Olikara ZP. Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2021 Mar 05]. Available from: https://scholar.colorado.edu/asen_gradetds/144.

Council of Science Editors:

Olikara ZP. Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques. [Doctoral Dissertation]. University of Colorado; 2016. Available from: https://scholar.colorado.edu/asen_gradetds/144

23. Oliveira, Iury Rafael Domingos de. Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds.

Degree: Docteur es, Mathématiques, 2020, Université de Lorraine; Universidade Federal de Alagoas

L'objectif de cette thèse est d'étudier les surfaces à courbure moyenne constante dans des variétés homogènes de dimension 3 avec un groupe d'isométries de dimension… (more)

Subjects/Keywords: Immersions isométriques; Surfaces à courbure moyenne constante; Variétés homogènes de dimension 3; Isometric immersions; Constant mean curvature surfaces; Homogeneous 3-manifolds; 516.36

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oliveira, I. R. D. d. (2020). Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds. (Doctoral Dissertation). Université de Lorraine; Universidade Federal de Alagoas. Retrieved from http://www.theses.fr/2020LORR0057

Chicago Manual of Style (16th Edition):

Oliveira, Iury Rafael Domingos de. “Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds.” 2020. Doctoral Dissertation, Université de Lorraine; Universidade Federal de Alagoas. Accessed March 05, 2021. http://www.theses.fr/2020LORR0057.

MLA Handbook (7th Edition):

Oliveira, Iury Rafael Domingos de. “Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds.” 2020. Web. 05 Mar 2021.

Vancouver:

Oliveira IRDd. Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds. [Internet] [Doctoral dissertation]. Université de Lorraine; Universidade Federal de Alagoas; 2020. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2020LORR0057.

Council of Science Editors:

Oliveira IRDd. Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds. [Doctoral Dissertation]. Université de Lorraine; Universidade Federal de Alagoas; 2020. Available from: http://www.theses.fr/2020LORR0057

24. Rodríguez Migueles, José Andrés. Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements.

Degree: Docteur es, Mathématiques et leurs interactions, 2018, Rennes 1

Grâce au théorème d'hyperbolisation, nous savons précisément quand une variété de dimension trois compacte admet une métrique hyperbolique. Par ailleurs, d'après le théorème de rigidité… (more)

Subjects/Keywords: Flot géodésique; 3-Variétés; Volume; Extérieur de nœud; Géométrie hyperbolique; Fraction continue; Geodesic flow; 3-Manifolds, volume; Knot complement; Hyperbolic geometry; Continuous fraction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rodríguez Migueles, J. A. (2018). Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2018REN1S021

Chicago Manual of Style (16th Edition):

Rodríguez Migueles, José Andrés. “Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements.” 2018. Doctoral Dissertation, Rennes 1. Accessed March 05, 2021. http://www.theses.fr/2018REN1S021.

MLA Handbook (7th Edition):

Rodríguez Migueles, José Andrés. “Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements.” 2018. Web. 05 Mar 2021.

Vancouver:

Rodríguez Migueles JA. Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements. [Internet] [Doctoral dissertation]. Rennes 1; 2018. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2018REN1S021.

Council of Science Editors:

Rodríguez Migueles JA. Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements. [Doctoral Dissertation]. Rennes 1; 2018. Available from: http://www.theses.fr/2018REN1S021

25. Magid, Aaron D. Deformation Spaces of Kleinian Surface Groups are not Locally Connected.

Degree: PhD, Mathematics, 2009, University of Michigan

 For any closed surface S of genus g at least 2, we show that the deformation space of marked hyperbolic 3-manifolds homotopy equivalent to S,… (more)

Subjects/Keywords: Deformation Spaces of Hyperbolic 3-manifolds; Mathematics; Science

…the argument. 80 5.3 Some of the pared manifolds we are using (illustrated in genus 3… …space of marked hyperbolic 3-manifolds homotopy equivalent to S, AH(S × I), is not… …Understanding and classifying 3-manifolds has been a major focus of topology during the past century… …topology of N. Thus it is natural to consider the set of marked hyperbolic 3-manifolds homotopy… …the marked homeomorphism types of compact 3-manifolds homotopy equivalent to N. Using the… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Magid, A. D. (2009). Deformation Spaces of Kleinian Surface Groups are not Locally Connected. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/63689

Chicago Manual of Style (16th Edition):

Magid, Aaron D. “Deformation Spaces of Kleinian Surface Groups are not Locally Connected.” 2009. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/63689.

MLA Handbook (7th Edition):

Magid, Aaron D. “Deformation Spaces of Kleinian Surface Groups are not Locally Connected.” 2009. Web. 05 Mar 2021.

Vancouver:

Magid AD. Deformation Spaces of Kleinian Surface Groups are not Locally Connected. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/63689.

Council of Science Editors:

Magid AD. Deformation Spaces of Kleinian Surface Groups are not Locally Connected. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/63689

26. Schirmer, Trenton Frederick. Two varieties of tunnel number subadditivity.

Degree: PhD, Mathematics, 2012, University of Iowa

  Knot theory and 3-manifold topology are closely intertwined, and few invariants stand so firmly in the intersection of these two subjects as the tunnel… (more)

Subjects/Keywords: 3-Manifolds; Heegaard splittings; Knots; Topology; Tunnel Number; Mathematics

…1 CHAPTER 1 INTRODUCTION Knot theory and the theory of 3-manifolds are closely… …classic Dehn-Lickorish-Wallace theorem which says that all closed 3-manifolds can be obtained… …constructing and describing 3-manifolds. The study of Dehn fillings and link surgery diagrams has… …from the fact that they allow a gateway to 3-manifolds for powerful algebraic and… …theorem discussed above. Some classical results on the Heegaard structure of 3-manifolds include… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schirmer, T. F. (2012). Two varieties of tunnel number subadditivity. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/3379

Chicago Manual of Style (16th Edition):

Schirmer, Trenton Frederick. “Two varieties of tunnel number subadditivity.” 2012. Doctoral Dissertation, University of Iowa. Accessed March 05, 2021. https://ir.uiowa.edu/etd/3379.

MLA Handbook (7th Edition):

Schirmer, Trenton Frederick. “Two varieties of tunnel number subadditivity.” 2012. Web. 05 Mar 2021.

Vancouver:

Schirmer TF. Two varieties of tunnel number subadditivity. [Internet] [Doctoral dissertation]. University of Iowa; 2012. [cited 2021 Mar 05]. Available from: https://ir.uiowa.edu/etd/3379.

Council of Science Editors:

Schirmer TF. Two varieties of tunnel number subadditivity. [Doctoral Dissertation]. University of Iowa; 2012. Available from: https://ir.uiowa.edu/etd/3379


University of Iowa

27. McDougall, Adam Corey. Relating Khovanov homology to a diagramless homology.

Degree: PhD, Mathematics, 2010, University of Iowa

  A homology theory is defined for equivalence classes of links under isotopy in the 3-sphere. Chain modules for a link L are generated by… (more)

Subjects/Keywords: 3-manifolds; diagramless; khovanov homology; knot theory; link homology; state surfaces; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McDougall, A. C. (2010). Relating Khovanov homology to a diagramless homology. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/709

Chicago Manual of Style (16th Edition):

McDougall, Adam Corey. “Relating Khovanov homology to a diagramless homology.” 2010. Doctoral Dissertation, University of Iowa. Accessed March 05, 2021. https://ir.uiowa.edu/etd/709.

MLA Handbook (7th Edition):

McDougall, Adam Corey. “Relating Khovanov homology to a diagramless homology.” 2010. Web. 05 Mar 2021.

Vancouver:

McDougall AC. Relating Khovanov homology to a diagramless homology. [Internet] [Doctoral dissertation]. University of Iowa; 2010. [cited 2021 Mar 05]. Available from: https://ir.uiowa.edu/etd/709.

Council of Science Editors:

McDougall AC. Relating Khovanov homology to a diagramless homology. [Doctoral Dissertation]. University of Iowa; 2010. Available from: https://ir.uiowa.edu/etd/709


University of Western Ontario

28. Wilson, Mitsuru. Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere.

Degree: 2016, University of Western Ontario

 We introduce a pseudo-Riemannian calculus of modules over noncommutative al- gebras in order to investigate to what extent the differential geometry of classical Riemannian manifolds(more)

Subjects/Keywords: Curvature; Gauss-Bonnet-Chern theorem; Levi-Civita connection; noncommutative 4-sphere; noncommutative geometry; noncommutative 3-sphere; non- commutative toric manifolds; pseudo-Riemannian calculus.; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilson, M. (2016). Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3937

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wilson, Mitsuru. “Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere.” 2016. Thesis, University of Western Ontario. Accessed March 05, 2021. https://ir.lib.uwo.ca/etd/3937.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wilson, Mitsuru. “Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere.” 2016. Web. 05 Mar 2021.

Vancouver:

Wilson M. Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere. [Internet] [Thesis]. University of Western Ontario; 2016. [cited 2021 Mar 05]. Available from: https://ir.lib.uwo.ca/etd/3937.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wilson M. Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere. [Thesis]. University of Western Ontario; 2016. Available from: https://ir.lib.uwo.ca/etd/3937

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

29. Jeon, Bo Gwang. Hyperbolic 3-manifolds of bounded volume and trace field degree.

Degree: PhD, 0439, 2013, University of Illinois – Urbana-Champaign

 For a single cusped hyperbolic 3-manifold, Hodgson proved that there are only finitely many Dehn fillings of it whose trace fields have bounded degree. In… (more)

Subjects/Keywords: Hyperbolic 3-Manifolds; Volume; Dehn Filling; Trace Field

…the answer is yes to Question 3 for any s-cusped manifolds where 1 ≤ s ≤ k − 1. Let X be the… …manifolds) Let M be a k-cusped hyperbolic 3-manifold. Then the height of any Dehn filling of… …M is uniformly bounded. 3 Even though we only deal with manifolds under certain… …structure of hyperbolic 3-manifolds of bounded volume, and the second one is a part of Thurston’s… …finite set of non-compact manifolds M1 , ..., Mk such that all closed hyperbolic 3-manifolds of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jeon, B. G. (2013). Hyperbolic 3-manifolds of bounded volume and trace field degree. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/45424

Chicago Manual of Style (16th Edition):

Jeon, Bo Gwang. “Hyperbolic 3-manifolds of bounded volume and trace field degree.” 2013. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed March 05, 2021. http://hdl.handle.net/2142/45424.

MLA Handbook (7th Edition):

Jeon, Bo Gwang. “Hyperbolic 3-manifolds of bounded volume and trace field degree.” 2013. Web. 05 Mar 2021.

Vancouver:

Jeon BG. Hyperbolic 3-manifolds of bounded volume and trace field degree. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2013. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2142/45424.

Council of Science Editors:

Jeon BG. Hyperbolic 3-manifolds of bounded volume and trace field degree. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2013. Available from: http://hdl.handle.net/2142/45424


Université Paris-Sud – Paris XI

30. Dufour, Guillaume. Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds.

Degree: Docteur es, Mathématiques, 2012, Université Paris-Sud – Paris XI

Cette thèse est une contribution au domaine des cubulations de groupes hyperboliques au sens de Gromov. Nous nous intéressons au cas particulier des groupes fondamentaux… (more)

Subjects/Keywords: Espaces à murs; Complexes cubiques CAT(0); Groupes hyperboliques; 3-variétés hyperboliques compactes; Sous-groupes de surface; Surfaces coupéees-croisées; Spaces with walls; CAT(0) cube complexes; Hyperbolic groups; Closed hyperbolic 3-manifolds; Surface subgroups; Cut-and-cross-join surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dufour, G. (2012). Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112053

Chicago Manual of Style (16th Edition):

Dufour, Guillaume. “Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 05, 2021. http://www.theses.fr/2012PA112053.

MLA Handbook (7th Edition):

Dufour, Guillaume. “Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds.” 2012. Web. 05 Mar 2021.

Vancouver:

Dufour G. Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2012PA112053.

Council of Science Editors:

Dufour G. Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112053

[1] [2]

.