Advanced search options
You searched for subject:(3 manifolds)
.
Showing records 1 – 30 of
39 total matches.
Search Limiters
Dates
▼ Search Limiters
Oklahoma State University
1. Chen, Lizhi. Systolic Freedom of 3-manifolds.
Degree: Mathematics, 2014, Oklahoma State University
URL: http://hdl.handle.net/11244/14761
Subjects/Keywords: 3-manifolds; semibundle; systolic freedom
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Chen, L. (2014). Systolic Freedom of 3-manifolds. (Thesis). Oklahoma State University. Retrieved from http://hdl.handle.net/11244/14761
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Chen, Lizhi. “Systolic Freedom of 3-manifolds.” 2014. Thesis, Oklahoma State University. Accessed March 05, 2021. http://hdl.handle.net/11244/14761.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Chen, Lizhi. “Systolic Freedom of 3-manifolds.” 2014. Web. 05 Mar 2021.
Vancouver:
Chen L. Systolic Freedom of 3-manifolds. [Internet] [Thesis]. Oklahoma State University; 2014. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11244/14761.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Chen L. Systolic Freedom of 3-manifolds. [Thesis]. Oklahoma State University; 2014. Available from: http://hdl.handle.net/11244/14761
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
University of Melbourne
2. Ramanayake, Don Buweneka Shanil. 0-efficient triangulations of Haken 3-manifolds.
Degree: 2015, University of Melbourne
URL: http://hdl.handle.net/11343/59325
Subjects/Keywords: efficient triangulations; 3-manifold triangulations; 3-manifold topology; Haken 3-manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ramanayake, D. B. S. (2015). 0-efficient triangulations of Haken 3-manifolds. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/59325
Chicago Manual of Style (16th Edition):
Ramanayake, Don Buweneka Shanil. “0-efficient triangulations of Haken 3-manifolds.” 2015. Doctoral Dissertation, University of Melbourne. Accessed March 05, 2021. http://hdl.handle.net/11343/59325.
MLA Handbook (7th Edition):
Ramanayake, Don Buweneka Shanil. “0-efficient triangulations of Haken 3-manifolds.” 2015. Web. 05 Mar 2021.
Vancouver:
Ramanayake DBS. 0-efficient triangulations of Haken 3-manifolds. [Internet] [Doctoral dissertation]. University of Melbourne; 2015. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11343/59325.
Council of Science Editors:
Ramanayake DBS. 0-efficient triangulations of Haken 3-manifolds. [Doctoral Dissertation]. University of Melbourne; 2015. Available from: http://hdl.handle.net/11343/59325
Cornell University
3. Lam, Chor Hang. Homological Stability Of Diffeomorphism Groups Of 3-Manifolds.
Degree: PhD, Mathematics, 2015, Cornell University
URL: http://hdl.handle.net/1813/39311
Subjects/Keywords: homological stability; diffeomorphism groups; 3-manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Lam, C. H. (2015). Homological Stability Of Diffeomorphism Groups Of 3-Manifolds. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/39311
Chicago Manual of Style (16th Edition):
Lam, Chor Hang. “Homological Stability Of Diffeomorphism Groups Of 3-Manifolds.” 2015. Doctoral Dissertation, Cornell University. Accessed March 05, 2021. http://hdl.handle.net/1813/39311.
MLA Handbook (7th Edition):
Lam, Chor Hang. “Homological Stability Of Diffeomorphism Groups Of 3-Manifolds.” 2015. Web. 05 Mar 2021.
Vancouver:
Lam CH. Homological Stability Of Diffeomorphism Groups Of 3-Manifolds. [Internet] [Doctoral dissertation]. Cornell University; 2015. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1813/39311.
Council of Science Editors:
Lam CH. Homological Stability Of Diffeomorphism Groups Of 3-Manifolds. [Doctoral Dissertation]. Cornell University; 2015. Available from: http://hdl.handle.net/1813/39311
University of Oxford
4. Wilkes, Gareth. Profinite properties of 3-manifold groups.
Degree: PhD, 2018, University of Oxford
URL: http://ora.ox.ac.uk/objects/uuid:bb7bdd91-ab28-4190-9bcd-ff11a43a9e79
;
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748996
Subjects/Keywords: 516; Mathematics; Topology; Profinite groups; 3-Manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Wilkes, G. (2018). Profinite properties of 3-manifold groups. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:bb7bdd91-ab28-4190-9bcd-ff11a43a9e79 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748996
Chicago Manual of Style (16th Edition):
Wilkes, Gareth. “Profinite properties of 3-manifold groups.” 2018. Doctoral Dissertation, University of Oxford. Accessed March 05, 2021. http://ora.ox.ac.uk/objects/uuid:bb7bdd91-ab28-4190-9bcd-ff11a43a9e79 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748996.
MLA Handbook (7th Edition):
Wilkes, Gareth. “Profinite properties of 3-manifold groups.” 2018. Web. 05 Mar 2021.
Vancouver:
Wilkes G. Profinite properties of 3-manifold groups. [Internet] [Doctoral dissertation]. University of Oxford; 2018. [cited 2021 Mar 05]. Available from: http://ora.ox.ac.uk/objects/uuid:bb7bdd91-ab28-4190-9bcd-ff11a43a9e79 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748996.
Council of Science Editors:
Wilkes G. Profinite properties of 3-manifold groups. [Doctoral Dissertation]. University of Oxford; 2018. Available from: http://ora.ox.ac.uk/objects/uuid:bb7bdd91-ab28-4190-9bcd-ff11a43a9e79 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748996
UCLA
5. Lin, Jianfeng. The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications.
Degree: Mathematics, 2016, UCLA
URL: http://www.escholarship.org/uc/item/8d29j4p4
Subjects/Keywords: Mathematics; 3-dimensional manifolds; finite dimensisonal approximations; Seiberg-Witten Floer spectrum
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Lin, J. (2016). The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/8d29j4p4
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Lin, Jianfeng. “The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications.” 2016. Thesis, UCLA. Accessed March 05, 2021. http://www.escholarship.org/uc/item/8d29j4p4.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Lin, Jianfeng. “The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications.” 2016. Web. 05 Mar 2021.
Vancouver:
Lin J. The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications. [Internet] [Thesis]. UCLA; 2016. [cited 2021 Mar 05]. Available from: http://www.escholarship.org/uc/item/8d29j4p4.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Lin J. The unfolded Seiberg-Witten Floer spectrum: Definition, properties and applications. [Thesis]. UCLA; 2016. Available from: http://www.escholarship.org/uc/item/8d29j4p4
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Princeton University
6. Yazdi, Mehdi. On Thurston's Euler class one conjecture .
Degree: PhD, 2017, Princeton University
URL: http://arks.princeton.edu/ark:/88435/dsp01zg64tp54v
Subjects/Keywords: 3-manifolds; Euler class; low dimensional Topology; taut foliation; Thurston norm
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Yazdi, M. (2017). On Thurston's Euler class one conjecture . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01zg64tp54v
Chicago Manual of Style (16th Edition):
Yazdi, Mehdi. “On Thurston's Euler class one conjecture .” 2017. Doctoral Dissertation, Princeton University. Accessed March 05, 2021. http://arks.princeton.edu/ark:/88435/dsp01zg64tp54v.
MLA Handbook (7th Edition):
Yazdi, Mehdi. “On Thurston's Euler class one conjecture .” 2017. Web. 05 Mar 2021.
Vancouver:
Yazdi M. On Thurston's Euler class one conjecture . [Internet] [Doctoral dissertation]. Princeton University; 2017. [cited 2021 Mar 05]. Available from: http://arks.princeton.edu/ark:/88435/dsp01zg64tp54v.
Council of Science Editors:
Yazdi M. On Thurston's Euler class one conjecture . [Doctoral Dissertation]. Princeton University; 2017. Available from: http://arks.princeton.edu/ark:/88435/dsp01zg64tp54v
Georgia Tech
7. Conway, James. Transverse surgery on knots in contact three-manifolds.
Degree: PhD, Mathematics, 2016, Georgia Tech
URL: http://hdl.handle.net/1853/55563
Subjects/Keywords: Contact geometry; Geometric topology; Knot theory; 3-manifolds; Topology; Geometry
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Conway, J. (2016). Transverse surgery on knots in contact three-manifolds. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/55563
Chicago Manual of Style (16th Edition):
Conway, James. “Transverse surgery on knots in contact three-manifolds.” 2016. Doctoral Dissertation, Georgia Tech. Accessed March 05, 2021. http://hdl.handle.net/1853/55563.
MLA Handbook (7th Edition):
Conway, James. “Transverse surgery on knots in contact three-manifolds.” 2016. Web. 05 Mar 2021.
Vancouver:
Conway J. Transverse surgery on knots in contact three-manifolds. [Internet] [Doctoral dissertation]. Georgia Tech; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1853/55563.
Council of Science Editors:
Conway J. Transverse surgery on knots in contact three-manifolds. [Doctoral Dissertation]. Georgia Tech; 2016. Available from: http://hdl.handle.net/1853/55563
Virginia Tech
8. Gartland, Christopher John. Cycle-Free Twisted Face-Pairing 3-Manifolds.
Degree: MS, Mathematics, 2014, Virginia Tech
URL: http://hdl.handle.net/10919/48188
Subjects/Keywords: 3-manifolds; plumbing graphs; Seifert fibered spaces; face-pairings
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Gartland, C. J. (2014). Cycle-Free Twisted Face-Pairing 3-Manifolds. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/48188
Chicago Manual of Style (16th Edition):
Gartland, Christopher John. “Cycle-Free Twisted Face-Pairing 3-Manifolds.” 2014. Masters Thesis, Virginia Tech. Accessed March 05, 2021. http://hdl.handle.net/10919/48188.
MLA Handbook (7th Edition):
Gartland, Christopher John. “Cycle-Free Twisted Face-Pairing 3-Manifolds.” 2014. Web. 05 Mar 2021.
Vancouver:
Gartland CJ. Cycle-Free Twisted Face-Pairing 3-Manifolds. [Internet] [Masters thesis]. Virginia Tech; 2014. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10919/48188.
Council of Science Editors:
Gartland CJ. Cycle-Free Twisted Face-Pairing 3-Manifolds. [Masters Thesis]. Virginia Tech; 2014. Available from: http://hdl.handle.net/10919/48188
Indian Institute of Science
9. Basak, Biplab. Minimal Crystallizations of 3- and 4- Manifolds.
Degree: PhD, Faculty of Science, 2018, Indian Institute of Science
URL: http://etd.iisc.ac.in/handle/2005/3682
Subjects/Keywords: Manifolds (Mathematics); Crystalizations; Colored Graphs; Lens Spaces; Geometric Topology; Manifold Crystallization; Pseudotriangulations; 3-Manifolds; 4-Manifolds; Combinatorics; Binary Polyhedral Group; Quaternion Spaces; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Basak, B. (2018). Minimal Crystallizations of 3- and 4- Manifolds. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3682
Chicago Manual of Style (16th Edition):
Basak, Biplab. “Minimal Crystallizations of 3- and 4- Manifolds.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed March 05, 2021. http://etd.iisc.ac.in/handle/2005/3682.
MLA Handbook (7th Edition):
Basak, Biplab. “Minimal Crystallizations of 3- and 4- Manifolds.” 2018. Web. 05 Mar 2021.
Vancouver:
Basak B. Minimal Crystallizations of 3- and 4- Manifolds. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Mar 05]. Available from: http://etd.iisc.ac.in/handle/2005/3682.
Council of Science Editors:
Basak B. Minimal Crystallizations of 3- and 4- Manifolds. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3682
Virginia Tech
10. Ackermann, Robert James. Constructing Bitwisted Face Pairing 3-Manifolds.
Degree: MS, Mathematics, 2008, Virginia Tech
URL: http://hdl.handle.net/10919/32655
Subjects/Keywords: Bitwisted 3-manifolds; Twisted 3-manifolds; Dehn Surgery; face pairings
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ackermann, R. J. (2008). Constructing Bitwisted Face Pairing 3-Manifolds. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/32655
Chicago Manual of Style (16th Edition):
Ackermann, Robert James. “Constructing Bitwisted Face Pairing 3-Manifolds.” 2008. Masters Thesis, Virginia Tech. Accessed March 05, 2021. http://hdl.handle.net/10919/32655.
MLA Handbook (7th Edition):
Ackermann, Robert James. “Constructing Bitwisted Face Pairing 3-Manifolds.” 2008. Web. 05 Mar 2021.
Vancouver:
Ackermann RJ. Constructing Bitwisted Face Pairing 3-Manifolds. [Internet] [Masters thesis]. Virginia Tech; 2008. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10919/32655.
Council of Science Editors:
Ackermann RJ. Constructing Bitwisted Face Pairing 3-Manifolds. [Masters Thesis]. Virginia Tech; 2008. Available from: http://hdl.handle.net/10919/32655
11. Teixeira, Aline de Moraes. Subvariedades de ângulo constante em 3-variedades homogêneas.
Degree: Mestrado, Matemática, 2015, University of São Paulo
URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/
;
Subjects/Keywords: Constant angle surfaces; Homogeneous 3-manifolds; Superfícies de ângulo constante; Variedades homogêneas
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Teixeira, A. d. M. (2015). Subvariedades de ângulo constante em 3-variedades homogêneas. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ ;
Chicago Manual of Style (16th Edition):
Teixeira, Aline de Moraes. “Subvariedades de ângulo constante em 3-variedades homogêneas.” 2015. Masters Thesis, University of São Paulo. Accessed March 05, 2021. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ ;.
MLA Handbook (7th Edition):
Teixeira, Aline de Moraes. “Subvariedades de ângulo constante em 3-variedades homogêneas.” 2015. Web. 05 Mar 2021.
Vancouver:
Teixeira AdM. Subvariedades de ângulo constante em 3-variedades homogêneas. [Internet] [Masters thesis]. University of São Paulo; 2015. [cited 2021 Mar 05]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ ;.
Council of Science Editors:
Teixeira AdM. Subvariedades de ângulo constante em 3-variedades homogêneas. [Masters Thesis]. University of São Paulo; 2015. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ ;
Brigham Young University
12. Burton, Stephan Daniel. Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds.
Degree: MS, 2012, Brigham Young University
URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4306&context=etd
Subjects/Keywords: Hyperbolic Geometry; Hyperbolic 3-manifolds; Unknotting Tunnel; Ford Domain; Knot Theory; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Burton, S. D. (2012). Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4306&context=etd
Chicago Manual of Style (16th Edition):
Burton, Stephan Daniel. “Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds.” 2012. Masters Thesis, Brigham Young University. Accessed March 05, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4306&context=etd.
MLA Handbook (7th Edition):
Burton, Stephan Daniel. “Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds.” 2012. Web. 05 Mar 2021.
Vancouver:
Burton SD. Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds. [Internet] [Masters thesis]. Brigham Young University; 2012. [cited 2021 Mar 05]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4306&context=etd.
Council of Science Editors:
Burton SD. Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds. [Masters Thesis]. Brigham Young University; 2012. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4306&context=etd
Brigham Young University
13. Meilstrup, Mark H. Wild Low-Dimensional Topology and Dynamics.
Degree: PhD, 2010, Brigham Young University
URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3202&context=etd
Subjects/Keywords: Sharkovskii's Theorem; periodic points; solenoids; 3-manifolds; fundamental group; Peano continua; homotopy invariants; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Meilstrup, M. H. (2010). Wild Low-Dimensional Topology and Dynamics. (Doctoral Dissertation). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3202&context=etd
Chicago Manual of Style (16th Edition):
Meilstrup, Mark H. “Wild Low-Dimensional Topology and Dynamics.” 2010. Doctoral Dissertation, Brigham Young University. Accessed March 05, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3202&context=etd.
MLA Handbook (7th Edition):
Meilstrup, Mark H. “Wild Low-Dimensional Topology and Dynamics.” 2010. Web. 05 Mar 2021.
Vancouver:
Meilstrup MH. Wild Low-Dimensional Topology and Dynamics. [Internet] [Doctoral dissertation]. Brigham Young University; 2010. [cited 2021 Mar 05]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3202&context=etd.
Council of Science Editors:
Meilstrup MH. Wild Low-Dimensional Topology and Dynamics. [Doctoral Dissertation]. Brigham Young University; 2010. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3202&context=etd
Brigham Young University
14. Lambert, Lee R. A Toolkit for the Construction and Understanding of 3-Manifolds.
Degree: PhD, 2010, Brigham Young University
URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3187&context=etd
Subjects/Keywords: Twist construction; bitwist construction; 3-manifolds; Dehn surgery; Heegaard splitting; Heegaard diagram; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Lambert, L. R. (2010). A Toolkit for the Construction and Understanding of 3-Manifolds. (Doctoral Dissertation). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3187&context=etd
Chicago Manual of Style (16th Edition):
Lambert, Lee R. “A Toolkit for the Construction and Understanding of 3-Manifolds.” 2010. Doctoral Dissertation, Brigham Young University. Accessed March 05, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3187&context=etd.
MLA Handbook (7th Edition):
Lambert, Lee R. “A Toolkit for the Construction and Understanding of 3-Manifolds.” 2010. Web. 05 Mar 2021.
Vancouver:
Lambert LR. A Toolkit for the Construction and Understanding of 3-Manifolds. [Internet] [Doctoral dissertation]. Brigham Young University; 2010. [cited 2021 Mar 05]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3187&context=etd.
Council of Science Editors:
Lambert LR. A Toolkit for the Construction and Understanding of 3-Manifolds. [Doctoral Dissertation]. Brigham Young University; 2010. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3187&context=etd
Princeton University
15. Kotelskiy, Artem. Bordered invariants in low-dimensional topology.
Degree: PhD, 2018, Princeton University
URL: http://arks.princeton.edu/ark:/88435/dsp01f7623g284
Subjects/Keywords: 3-manifolds; bordered Heegaard Floer theory; Fukaya category; invariants; knots; low-dimensional topology
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kotelskiy, A. (2018). Bordered invariants in low-dimensional topology. (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01f7623g284
Chicago Manual of Style (16th Edition):
Kotelskiy, Artem. “Bordered invariants in low-dimensional topology. ” 2018. Doctoral Dissertation, Princeton University. Accessed March 05, 2021. http://arks.princeton.edu/ark:/88435/dsp01f7623g284.
MLA Handbook (7th Edition):
Kotelskiy, Artem. “Bordered invariants in low-dimensional topology. ” 2018. Web. 05 Mar 2021.
Vancouver:
Kotelskiy A. Bordered invariants in low-dimensional topology. [Internet] [Doctoral dissertation]. Princeton University; 2018. [cited 2021 Mar 05]. Available from: http://arks.princeton.edu/ark:/88435/dsp01f7623g284.
Council of Science Editors:
Kotelskiy A. Bordered invariants in low-dimensional topology. [Doctoral Dissertation]. Princeton University; 2018. Available from: http://arks.princeton.edu/ark:/88435/dsp01f7623g284
Boston College
16. Krishna, Siddhi. Taut foliations, positive braids, and the L-space conjecture.
Degree: PhD, Mathematics, 2020, Boston College
URL: http://dlib.bc.edu/islandora/object/bc-ir:108731
Subjects/Keywords: 3-manifolds; Dehn surgery; geometric topology; knots and links; low-dimensional topology; taut foliations
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Krishna, S. (2020). Taut foliations, positive braids, and the L-space conjecture. (Doctoral Dissertation). Boston College. Retrieved from http://dlib.bc.edu/islandora/object/bc-ir:108731
Chicago Manual of Style (16th Edition):
Krishna, Siddhi. “Taut foliations, positive braids, and the L-space conjecture.” 2020. Doctoral Dissertation, Boston College. Accessed March 05, 2021. http://dlib.bc.edu/islandora/object/bc-ir:108731.
MLA Handbook (7th Edition):
Krishna, Siddhi. “Taut foliations, positive braids, and the L-space conjecture.” 2020. Web. 05 Mar 2021.
Vancouver:
Krishna S. Taut foliations, positive braids, and the L-space conjecture. [Internet] [Doctoral dissertation]. Boston College; 2020. [cited 2021 Mar 05]. Available from: http://dlib.bc.edu/islandora/object/bc-ir:108731.
Council of Science Editors:
Krishna S. Taut foliations, positive braids, and the L-space conjecture. [Doctoral Dissertation]. Boston College; 2020. Available from: http://dlib.bc.edu/islandora/object/bc-ir:108731
Massey University
17. Zhang, Qingxiang. Two elliptic generator Kleinian groups.
Degree: PhD, Mathematics, 2010, Massey University
URL: http://hdl.handle.net/10179/2044
Subjects/Keywords: Kleinian groups; Hyperbolic 3-manifolds and 3-orbifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Zhang, Q. (2010). Two elliptic generator Kleinian groups. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/2044
Chicago Manual of Style (16th Edition):
Zhang, Qingxiang. “Two elliptic generator Kleinian groups.” 2010. Doctoral Dissertation, Massey University. Accessed March 05, 2021. http://hdl.handle.net/10179/2044.
MLA Handbook (7th Edition):
Zhang, Qingxiang. “Two elliptic generator Kleinian groups.” 2010. Web. 05 Mar 2021.
Vancouver:
Zhang Q. Two elliptic generator Kleinian groups. [Internet] [Doctoral dissertation]. Massey University; 2010. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10179/2044.
Council of Science Editors:
Zhang Q. Two elliptic generator Kleinian groups. [Doctoral Dissertation]. Massey University; 2010. Available from: http://hdl.handle.net/10179/2044
18. Didier Lins, Lauro. BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces .
Degree: 2007, Universidade Federal de Pernambuco
URL: http://repositorio.ufpe.br/handle/123456789/7085
Subjects/Keywords: Topology; Closed connected oriented 3-manifolds; Plane graphs; Spaces; Graph encoded manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Didier Lins, L. (2007). BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces . (Thesis). Universidade Federal de Pernambuco. Retrieved from http://repositorio.ufpe.br/handle/123456789/7085
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Didier Lins, Lauro. “BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces .” 2007. Thesis, Universidade Federal de Pernambuco. Accessed March 05, 2021. http://repositorio.ufpe.br/handle/123456789/7085.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Didier Lins, Lauro. “BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces .” 2007. Web. 05 Mar 2021.
Vancouver:
Didier Lins L. BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces . [Internet] [Thesis]. Universidade Federal de Pernambuco; 2007. [cited 2021 Mar 05]. Available from: http://repositorio.ufpe.br/handle/123456789/7085.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Didier Lins L. BLINK : a language to view; Recognize; Classify and manipulate 3D-spaces . [Thesis]. Universidade Federal de Pernambuco; 2007. Available from: http://repositorio.ufpe.br/handle/123456789/7085
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
19. Liu, Yi. Nonzero degree maps between three dimensional manifolds.
Degree: Mathematics, 2012, University of California – Berkeley
URL: http://www.escholarship.org/uc/item/0jj5791w
Subjects/Keywords: Mathematics; 3-manifolds; nonzero degree maps
…guidance in these years. He led me into the world of 3-manifolds, and shared all his ideas during… …finiteness associated with nonzero degree maps between 3-manifolds, from the viewpoint of… …geometrization. For convenience, we often stay in the piecewise linear category of 3-manifolds for… …orientable closed 3-manifolds. For an integer d > 0, we say that M d-dominates N if there is a map… …from the essential case of closed 3-manifolds, so we shall not consider dominations relative…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Liu, Y. (2012). Nonzero degree maps between three dimensional manifolds. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/0jj5791w
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Liu, Yi. “Nonzero degree maps between three dimensional manifolds.” 2012. Thesis, University of California – Berkeley. Accessed March 05, 2021. http://www.escholarship.org/uc/item/0jj5791w.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Liu, Yi. “Nonzero degree maps between three dimensional manifolds.” 2012. Web. 05 Mar 2021.
Vancouver:
Liu Y. Nonzero degree maps between three dimensional manifolds. [Internet] [Thesis]. University of California – Berkeley; 2012. [cited 2021 Mar 05]. Available from: http://www.escholarship.org/uc/item/0jj5791w.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Liu Y. Nonzero degree maps between three dimensional manifolds. [Thesis]. University of California – Berkeley; 2012. Available from: http://www.escholarship.org/uc/item/0jj5791w
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
20. Lee, Michelle Dongeun. Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds.
Degree: PhD, Mathematics, 2012, University of Michigan
URL: http://hdl.handle.net/2027.42/94050
Subjects/Keywords: Character Varieties; Hyperbolic 3-manifolds; Mathematics; Science
…generalization of Teichm¨ uller space to hyperbolic 3-manifolds, namely when π is the fundamental group… …3-manifolds homotopy equivalent to M . The deformation space AH(M ) is well… …hyperbolic 3-manifolds: twisted interval bundles and compression bodies. 1.1 Main Results In… …II we review some well-known theory of hyperbolic 3-manifolds and prove some elementary but… …Section 2.1, we review the background material on hyperbolic 3-manifolds that we will need (…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Lee, M. D. (2012). Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/94050
Chicago Manual of Style (16th Edition):
Lee, Michelle Dongeun. “Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds.” 2012. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/94050.
MLA Handbook (7th Edition):
Lee, Michelle Dongeun. “Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds.” 2012. Web. 05 Mar 2021.
Vancouver:
Lee MD. Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds. [Internet] [Doctoral dissertation]. University of Michigan; 2012. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/94050.
Council of Science Editors:
Lee MD. Dynamics on PSL(2, C)-Character Varieties of Certain Hyperbolic 3-Manifolds. [Doctoral Dissertation]. University of Michigan; 2012. Available from: http://hdl.handle.net/2027.42/94050
21. Renardy, David. Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary.
Degree: PhD, Mathematics, 2016, University of Michigan
URL: http://hdl.handle.net/2027.42/133206
Subjects/Keywords: Kleinian Groups; Hyperbolic 3-manifolds; Mathematics; Science
…hyperbolic 3-manifolds except for finitely many choices of p and q. We make use of the Hyperbolic… …toroidal component in its boundary. We use hyperbolic Dehn filling to construct 3-manifolds Mn0… …guarantees that all ρ in AH(M ) yield hyperbolic 3-manifolds homeomorphic to the interior… …incompressible boundary 3-manifolds. We also give some other indications as to the complexity of the… …x29; is uniformized by Γ. Thurston conjectured in the 1970’s that all compact 3-manifolds…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Renardy, D. (2016). Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/133206
Chicago Manual of Style (16th Edition):
Renardy, David. “Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary.” 2016. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/133206.
MLA Handbook (7th Edition):
Renardy, David. “Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary.” 2016. Web. 05 Mar 2021.
Vancouver:
Renardy D. Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary. [Internet] [Doctoral dissertation]. University of Michigan; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/133206.
Council of Science Editors:
Renardy D. Bumping in the Deformation Spaces of Hyperbolic 3-Manifolds with Compressible Boundary. [Doctoral Dissertation]. University of Michigan; 2016. Available from: http://hdl.handle.net/2027.42/133206
University of Colorado
22. Olikara, Zubin Philip. Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques.
Degree: PhD, Aerospace Engineering Sciences, 2016, University of Colorado
URL: https://scholar.colorado.edu/asen_gradetds/144
Subjects/Keywords: Gauss-Legendre collocation; heteroclinic connections; invariant manifolds; quasi-periodic orbits; restricted 3-body problem; spacecraft trajectory design; Aerospace Engineering; Applied Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Olikara, Z. P. (2016). Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/asen_gradetds/144
Chicago Manual of Style (16th Edition):
Olikara, Zubin Philip. “Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques.” 2016. Doctoral Dissertation, University of Colorado. Accessed March 05, 2021. https://scholar.colorado.edu/asen_gradetds/144.
MLA Handbook (7th Edition):
Olikara, Zubin Philip. “Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques.” 2016. Web. 05 Mar 2021.
Vancouver:
Olikara ZP. Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2021 Mar 05]. Available from: https://scholar.colorado.edu/asen_gradetds/144.
Council of Science Editors:
Olikara ZP. Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques. [Doctoral Dissertation]. University of Colorado; 2016. Available from: https://scholar.colorado.edu/asen_gradetds/144
23. Oliveira, Iury Rafael Domingos de. Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds.
Degree: Docteur es, Mathématiques, 2020, Université de Lorraine; Universidade Federal de Alagoas
URL: http://www.theses.fr/2020LORR0057
Subjects/Keywords: Immersions isométriques; Surfaces à courbure moyenne constante; Variétés homogènes de dimension 3; Isometric immersions; Constant mean curvature surfaces; Homogeneous 3-manifolds; 516.36
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Oliveira, I. R. D. d. (2020). Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds. (Doctoral Dissertation). Université de Lorraine; Universidade Federal de Alagoas. Retrieved from http://www.theses.fr/2020LORR0057
Chicago Manual of Style (16th Edition):
Oliveira, Iury Rafael Domingos de. “Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds.” 2020. Doctoral Dissertation, Université de Lorraine; Universidade Federal de Alagoas. Accessed March 05, 2021. http://www.theses.fr/2020LORR0057.
MLA Handbook (7th Edition):
Oliveira, Iury Rafael Domingos de. “Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds.” 2020. Web. 05 Mar 2021.
Vancouver:
Oliveira IRDd. Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds. [Internet] [Doctoral dissertation]. Université de Lorraine; Universidade Federal de Alagoas; 2020. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2020LORR0057.
Council of Science Editors:
Oliveira IRDd. Surfaces à courbure moyenne constante dans les variétés homogènes : Constant mean curvature surfaces into homogeneous manifolds. [Doctoral Dissertation]. Université de Lorraine; Universidade Federal de Alagoas; 2020. Available from: http://www.theses.fr/2020LORR0057
24. Rodríguez Migueles, José Andrés. Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements.
Degree: Docteur es, Mathématiques et leurs interactions, 2018, Rennes 1
URL: http://www.theses.fr/2018REN1S021
Subjects/Keywords: Flot géodésique; 3-Variétés; Volume; Extérieur de nœud; Géométrie hyperbolique; Fraction continue; Geodesic flow; 3-Manifolds, volume; Knot complement; Hyperbolic geometry; Continuous fraction
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Rodríguez Migueles, J. A. (2018). Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2018REN1S021
Chicago Manual of Style (16th Edition):
Rodríguez Migueles, José Andrés. “Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements.” 2018. Doctoral Dissertation, Rennes 1. Accessed March 05, 2021. http://www.theses.fr/2018REN1S021.
MLA Handbook (7th Edition):
Rodríguez Migueles, José Andrés. “Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements.” 2018. Web. 05 Mar 2021.
Vancouver:
Rodríguez Migueles JA. Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements. [Internet] [Doctoral dissertation]. Rennes 1; 2018. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2018REN1S021.
Council of Science Editors:
Rodríguez Migueles JA. Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds : Geodesics on hyperbolic surfaces and knot complements. [Doctoral Dissertation]. Rennes 1; 2018. Available from: http://www.theses.fr/2018REN1S021
25. Magid, Aaron D. Deformation Spaces of Kleinian Surface Groups are not Locally Connected.
Degree: PhD, Mathematics, 2009, University of Michigan
URL: http://hdl.handle.net/2027.42/63689
Subjects/Keywords: Deformation Spaces of Hyperbolic 3-manifolds; Mathematics; Science
…the argument. 80 5.3 Some of the pared manifolds we are using (illustrated in genus 3… …space of marked hyperbolic 3-manifolds homotopy equivalent to S, AH(S × I), is not… …Understanding and classifying 3-manifolds has been a major focus of topology during the past century… …topology of N. Thus it is natural to consider the set of marked hyperbolic 3-manifolds homotopy… …the marked homeomorphism types of compact 3-manifolds homotopy equivalent to N. Using the…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Magid, A. D. (2009). Deformation Spaces of Kleinian Surface Groups are not Locally Connected. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/63689
Chicago Manual of Style (16th Edition):
Magid, Aaron D. “Deformation Spaces of Kleinian Surface Groups are not Locally Connected.” 2009. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/63689.
MLA Handbook (7th Edition):
Magid, Aaron D. “Deformation Spaces of Kleinian Surface Groups are not Locally Connected.” 2009. Web. 05 Mar 2021.
Vancouver:
Magid AD. Deformation Spaces of Kleinian Surface Groups are not Locally Connected. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/63689.
Council of Science Editors:
Magid AD. Deformation Spaces of Kleinian Surface Groups are not Locally Connected. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/63689
26. Schirmer, Trenton Frederick. Two varieties of tunnel number subadditivity.
Degree: PhD, Mathematics, 2012, University of Iowa
URL: https://ir.uiowa.edu/etd/3379
Subjects/Keywords: 3-Manifolds; Heegaard splittings; Knots; Topology; Tunnel Number; Mathematics
…1 CHAPTER 1 INTRODUCTION Knot theory and the theory of 3-manifolds are closely… …classic Dehn-Lickorish-Wallace theorem which says that all closed 3-manifolds can be obtained… …constructing and describing 3-manifolds. The study of Dehn fillings and link surgery diagrams has… …from the fact that they allow a gateway to 3-manifolds for powerful algebraic and… …theorem discussed above. Some classical results on the Heegaard structure of 3-manifolds include…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Schirmer, T. F. (2012). Two varieties of tunnel number subadditivity. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/3379
Chicago Manual of Style (16th Edition):
Schirmer, Trenton Frederick. “Two varieties of tunnel number subadditivity.” 2012. Doctoral Dissertation, University of Iowa. Accessed March 05, 2021. https://ir.uiowa.edu/etd/3379.
MLA Handbook (7th Edition):
Schirmer, Trenton Frederick. “Two varieties of tunnel number subadditivity.” 2012. Web. 05 Mar 2021.
Vancouver:
Schirmer TF. Two varieties of tunnel number subadditivity. [Internet] [Doctoral dissertation]. University of Iowa; 2012. [cited 2021 Mar 05]. Available from: https://ir.uiowa.edu/etd/3379.
Council of Science Editors:
Schirmer TF. Two varieties of tunnel number subadditivity. [Doctoral Dissertation]. University of Iowa; 2012. Available from: https://ir.uiowa.edu/etd/3379
University of Iowa
27. McDougall, Adam Corey. Relating Khovanov homology to a diagramless homology.
Degree: PhD, Mathematics, 2010, University of Iowa
URL: https://ir.uiowa.edu/etd/709
Subjects/Keywords: 3-manifolds; diagramless; khovanov homology; knot theory; link homology; state surfaces; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
McDougall, A. C. (2010). Relating Khovanov homology to a diagramless homology. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/709
Chicago Manual of Style (16th Edition):
McDougall, Adam Corey. “Relating Khovanov homology to a diagramless homology.” 2010. Doctoral Dissertation, University of Iowa. Accessed March 05, 2021. https://ir.uiowa.edu/etd/709.
MLA Handbook (7th Edition):
McDougall, Adam Corey. “Relating Khovanov homology to a diagramless homology.” 2010. Web. 05 Mar 2021.
Vancouver:
McDougall AC. Relating Khovanov homology to a diagramless homology. [Internet] [Doctoral dissertation]. University of Iowa; 2010. [cited 2021 Mar 05]. Available from: https://ir.uiowa.edu/etd/709.
Council of Science Editors:
McDougall AC. Relating Khovanov homology to a diagramless homology. [Doctoral Dissertation]. University of Iowa; 2010. Available from: https://ir.uiowa.edu/etd/709
University of Western Ontario
28. Wilson, Mitsuru. Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere.
Degree: 2016, University of Western Ontario
URL: https://ir.lib.uwo.ca/etd/3937
Subjects/Keywords: Curvature; Gauss-Bonnet-Chern theorem; Levi-Civita connection; noncommutative 4-sphere; noncommutative geometry; noncommutative 3-sphere; non- commutative toric manifolds; pseudo-Riemannian calculus.; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Wilson, M. (2016). Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3937
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Wilson, Mitsuru. “Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere.” 2016. Thesis, University of Western Ontario. Accessed March 05, 2021. https://ir.lib.uwo.ca/etd/3937.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Wilson, Mitsuru. “Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere.” 2016. Web. 05 Mar 2021.
Vancouver:
Wilson M. Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere. [Internet] [Thesis]. University of Western Ontario; 2016. [cited 2021 Mar 05]. Available from: https://ir.lib.uwo.ca/etd/3937.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Wilson M. Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere. [Thesis]. University of Western Ontario; 2016. Available from: https://ir.lib.uwo.ca/etd/3937
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
29. Jeon, Bo Gwang. Hyperbolic 3-manifolds of bounded volume and trace field degree.
Degree: PhD, 0439, 2013, University of Illinois – Urbana-Champaign
URL: http://hdl.handle.net/2142/45424
Subjects/Keywords: Hyperbolic 3-Manifolds; Volume; Dehn Filling; Trace Field
…the answer is yes to Question 3 for any s-cusped manifolds where 1 ≤ s ≤ k − 1. Let X be the… …manifolds) Let M be a k-cusped hyperbolic 3-manifold. Then the height of any Dehn filling of… …M is uniformly bounded. 3 Even though we only deal with manifolds under certain… …structure of hyperbolic 3-manifolds of bounded volume, and the second one is a part of Thurston’s… …finite set of non-compact manifolds M1 , ..., Mk such that all closed hyperbolic 3-manifolds of…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jeon, B. G. (2013). Hyperbolic 3-manifolds of bounded volume and trace field degree. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/45424
Chicago Manual of Style (16th Edition):
Jeon, Bo Gwang. “Hyperbolic 3-manifolds of bounded volume and trace field degree.” 2013. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed March 05, 2021. http://hdl.handle.net/2142/45424.
MLA Handbook (7th Edition):
Jeon, Bo Gwang. “Hyperbolic 3-manifolds of bounded volume and trace field degree.” 2013. Web. 05 Mar 2021.
Vancouver:
Jeon BG. Hyperbolic 3-manifolds of bounded volume and trace field degree. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2013. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2142/45424.
Council of Science Editors:
Jeon BG. Hyperbolic 3-manifolds of bounded volume and trace field degree. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2013. Available from: http://hdl.handle.net/2142/45424
Université Paris-Sud – Paris XI
30. Dufour, Guillaume. Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds.
Degree: Docteur es, Mathématiques, 2012, Université Paris-Sud – Paris XI
URL: http://www.theses.fr/2012PA112053
Subjects/Keywords: Espaces à murs; Complexes cubiques CAT(0); Groupes hyperboliques; 3-variétés hyperboliques compactes; Sous-groupes de surface; Surfaces coupéees-croisées; Spaces with walls; CAT(0) cube complexes; Hyperbolic groups; Closed hyperbolic 3-manifolds; Surface subgroups; Cut-and-cross-join surfaces
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Dufour, G. (2012). Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112053
Chicago Manual of Style (16th Edition):
Dufour, Guillaume. “Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 05, 2021. http://www.theses.fr/2012PA112053.
MLA Handbook (7th Edition):
Dufour, Guillaume. “Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds.” 2012. Web. 05 Mar 2021.
Vancouver:
Dufour G. Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2012PA112053.
Council of Science Editors:
Dufour G. Cubulations de variétés hyperboliques compactes : Cubulations of closed hyperbolic manifolds. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112053