Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( symplectic integrators). Showing records 1 – 11 of 11 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of California – San Diego

1. Schmitt, Jeremy M. Properties of Hamiltonian Variational Integrators.

Degree: Mathematics, 2017, University of California – San Diego

 This dissertation explores Hamiltonian variational integrators. Variational integrators are a common class of symplectic integrators, which have primarily been analyzed and constructed by discretizing Hamilton's… (more)

Subjects/Keywords: Mathematics; Applied mathematics; Adaptive; Discrete Hamiltonian; Numerical Analysis; Symplectic Integrators; Variational Integrators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schmitt, J. M. (2017). Properties of Hamiltonian Variational Integrators. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/9wm0q93j

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schmitt, Jeremy M. “Properties of Hamiltonian Variational Integrators.” 2017. Thesis, University of California – San Diego. Accessed October 31, 2020. http://www.escholarship.org/uc/item/9wm0q93j.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schmitt, Jeremy M. “Properties of Hamiltonian Variational Integrators.” 2017. Web. 31 Oct 2020.

Vancouver:

Schmitt JM. Properties of Hamiltonian Variational Integrators. [Internet] [Thesis]. University of California – San Diego; 2017. [cited 2020 Oct 31]. Available from: http://www.escholarship.org/uc/item/9wm0q93j.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schmitt JM. Properties of Hamiltonian Variational Integrators. [Thesis]. University of California – San Diego; 2017. Available from: http://www.escholarship.org/uc/item/9wm0q93j

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Rochester

2. Moore, Alexander. Dynamical simulations of extrasolar planetary systems with debris disks using a GPU accelerated N-body code.

Degree: PhD, 2013, University of Rochester

 This thesis begins with a description of a hybrid symplectic integrator named QYMSYM which is capable of planetary system simulations. This integrator has been programmed… (more)

Subjects/Keywords: CUDA; GPU; HR 8799; KOI-730; N-body; Symplectic integrators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moore, A. (2013). Dynamical simulations of extrasolar planetary systems with debris disks using a GPU accelerated N-body code. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/27847

Chicago Manual of Style (16th Edition):

Moore, Alexander. “Dynamical simulations of extrasolar planetary systems with debris disks using a GPU accelerated N-body code.” 2013. Doctoral Dissertation, University of Rochester. Accessed October 31, 2020. http://hdl.handle.net/1802/27847.

MLA Handbook (7th Edition):

Moore, Alexander. “Dynamical simulations of extrasolar planetary systems with debris disks using a GPU accelerated N-body code.” 2013. Web. 31 Oct 2020.

Vancouver:

Moore A. Dynamical simulations of extrasolar planetary systems with debris disks using a GPU accelerated N-body code. [Internet] [Doctoral dissertation]. University of Rochester; 2013. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1802/27847.

Council of Science Editors:

Moore A. Dynamical simulations of extrasolar planetary systems with debris disks using a GPU accelerated N-body code. [Doctoral Dissertation]. University of Rochester; 2013. Available from: http://hdl.handle.net/1802/27847


University of Otago

3. Peter, Ralf. Numerical studies of geometric partial differential equations with symplectic methods .

Degree: 2012, University of Otago

 In this thesis the (2+1) dimensional wave map equations with the 2- sphere as target manifold is solved, using numerical methods. The focus will be… (more)

Subjects/Keywords: wave maps; symplectic integrators; partial differential equations; finite differences; numerical methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peter, R. (2012). Numerical studies of geometric partial differential equations with symplectic methods . (Doctoral Dissertation). University of Otago. Retrieved from http://hdl.handle.net/10523/2426

Chicago Manual of Style (16th Edition):

Peter, Ralf. “Numerical studies of geometric partial differential equations with symplectic methods .” 2012. Doctoral Dissertation, University of Otago. Accessed October 31, 2020. http://hdl.handle.net/10523/2426.

MLA Handbook (7th Edition):

Peter, Ralf. “Numerical studies of geometric partial differential equations with symplectic methods .” 2012. Web. 31 Oct 2020.

Vancouver:

Peter R. Numerical studies of geometric partial differential equations with symplectic methods . [Internet] [Doctoral dissertation]. University of Otago; 2012. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10523/2426.

Council of Science Editors:

Peter R. Numerical studies of geometric partial differential equations with symplectic methods . [Doctoral Dissertation]. University of Otago; 2012. Available from: http://hdl.handle.net/10523/2426


Princeton University

4. Ellison, Charles Leland. Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics .

Degree: PhD, 2016, Princeton University

 Geometric integrators yield high-fidelity numerical results by retaining conservation laws in the time advance. A particularly powerful class of geometric integrators is symplectic integrators, which… (more)

Subjects/Keywords: Degenerate Lagrangian; Guiding Center; Hamiltonian; Non-canonical; Symplectic; Variational Integrators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ellison, C. L. (2016). Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01pv63g2655

Chicago Manual of Style (16th Edition):

Ellison, Charles Leland. “Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics .” 2016. Doctoral Dissertation, Princeton University. Accessed October 31, 2020. http://arks.princeton.edu/ark:/88435/dsp01pv63g2655.

MLA Handbook (7th Edition):

Ellison, Charles Leland. “Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics .” 2016. Web. 31 Oct 2020.

Vancouver:

Ellison CL. Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics . [Internet] [Doctoral dissertation]. Princeton University; 2016. [cited 2020 Oct 31]. Available from: http://arks.princeton.edu/ark:/88435/dsp01pv63g2655.

Council of Science Editors:

Ellison CL. Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics . [Doctoral Dissertation]. Princeton University; 2016. Available from: http://arks.princeton.edu/ark:/88435/dsp01pv63g2655

5. Islas, Alvaro Lucas. Multi-Symplectic Integrators for Nonlinear Wave Equations.

Degree: PhD, Mathematics and Statistics, 2003, Old Dominion University

Symplectic (area-preserving) integrators for Hamiltonian ordinary differential equations have shown to be robust, efficient and accurate in long-term calculations. In this thesis, we show… (more)

Subjects/Keywords: Integrators; Nonlinear wave equations; Symplectic integrators; Wave equations; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Islas, A. L. (2003). Multi-Symplectic Integrators for Nonlinear Wave Equations. (Doctoral Dissertation). Old Dominion University. Retrieved from 9780496553990 ; https://digitalcommons.odu.edu/mathstat_etds/29

Chicago Manual of Style (16th Edition):

Islas, Alvaro Lucas. “Multi-Symplectic Integrators for Nonlinear Wave Equations.” 2003. Doctoral Dissertation, Old Dominion University. Accessed October 31, 2020. 9780496553990 ; https://digitalcommons.odu.edu/mathstat_etds/29.

MLA Handbook (7th Edition):

Islas, Alvaro Lucas. “Multi-Symplectic Integrators for Nonlinear Wave Equations.” 2003. Web. 31 Oct 2020.

Vancouver:

Islas AL. Multi-Symplectic Integrators for Nonlinear Wave Equations. [Internet] [Doctoral dissertation]. Old Dominion University; 2003. [cited 2020 Oct 31]. Available from: 9780496553990 ; https://digitalcommons.odu.edu/mathstat_etds/29.

Council of Science Editors:

Islas AL. Multi-Symplectic Integrators for Nonlinear Wave Equations. [Doctoral Dissertation]. Old Dominion University; 2003. Available from: 9780496553990 ; https://digitalcommons.odu.edu/mathstat_etds/29


University of Saskatchewan

6. Cuell, Charles Lee. Lagrange-d'alembert integrators.

Degree: 2007, University of Saskatchewan

 A Lagrange – d'Alembert integrator is a geometric numerical method for finding numerical solutions to the Lagrange – d'Alembert equations for mechanical systems with nonholonomic constraints that… (more)

Subjects/Keywords: Geometric mechanics; integrators; symplectic; nonholonomic; holonomic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cuell, C. L. (2007). Lagrange-d'alembert integrators. (Thesis). University of Saskatchewan. Retrieved from http://hdl.handle.net/10388/etd-06062007-150506

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cuell, Charles Lee. “Lagrange-d'alembert integrators.” 2007. Thesis, University of Saskatchewan. Accessed October 31, 2020. http://hdl.handle.net/10388/etd-06062007-150506.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cuell, Charles Lee. “Lagrange-d'alembert integrators.” 2007. Web. 31 Oct 2020.

Vancouver:

Cuell CL. Lagrange-d'alembert integrators. [Internet] [Thesis]. University of Saskatchewan; 2007. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10388/etd-06062007-150506.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cuell CL. Lagrange-d'alembert integrators. [Thesis]. University of Saskatchewan; 2007. Available from: http://hdl.handle.net/10388/etd-06062007-150506

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Massey University

7. Joo, Seung-Hee. Contact systems and contact integrators.

Degree: PhD, Mathematics, 2003, Massey University

 This thesis is concerned with the study of contact systems, which are ordinary differential equations whose flow preserves a contact structure. We study contact systems… (more)

Subjects/Keywords: Symplectic geometry; Hamiltonian systems; Contact systems; Contact integrators; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Joo, S. (2003). Contact systems and contact integrators. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/1888

Chicago Manual of Style (16th Edition):

Joo, Seung-Hee. “Contact systems and contact integrators.” 2003. Doctoral Dissertation, Massey University. Accessed October 31, 2020. http://hdl.handle.net/10179/1888.

MLA Handbook (7th Edition):

Joo, Seung-Hee. “Contact systems and contact integrators.” 2003. Web. 31 Oct 2020.

Vancouver:

Joo S. Contact systems and contact integrators. [Internet] [Doctoral dissertation]. Massey University; 2003. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10179/1888.

Council of Science Editors:

Joo S. Contact systems and contact integrators. [Doctoral Dissertation]. Massey University; 2003. Available from: http://hdl.handle.net/10179/1888

8. Karpeev, Dmitry. Geometric Integrators for Hamiltonian PDEs.

Degree: PhD, Computer Science, 2002, Old Dominion University

  We consider methods for systematic construction of algorithms for a class of time-dependent PDEs with Hamiltonian structure. These systems possess phase space geometry and… (more)

Subjects/Keywords: Geometric integrators; Hamiltonian PDEs; PDEs; Symplectic; Computer Sciences; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karpeev, D. (2002). Geometric Integrators for Hamiltonian PDEs. (Doctoral Dissertation). Old Dominion University. Retrieved from 9780493883670 ; https://digitalcommons.odu.edu/computerscience_etds/76

Chicago Manual of Style (16th Edition):

Karpeev, Dmitry. “Geometric Integrators for Hamiltonian PDEs.” 2002. Doctoral Dissertation, Old Dominion University. Accessed October 31, 2020. 9780493883670 ; https://digitalcommons.odu.edu/computerscience_etds/76.

MLA Handbook (7th Edition):

Karpeev, Dmitry. “Geometric Integrators for Hamiltonian PDEs.” 2002. Web. 31 Oct 2020.

Vancouver:

Karpeev D. Geometric Integrators for Hamiltonian PDEs. [Internet] [Doctoral dissertation]. Old Dominion University; 2002. [cited 2020 Oct 31]. Available from: 9780493883670 ; https://digitalcommons.odu.edu/computerscience_etds/76.

Council of Science Editors:

Karpeev D. Geometric Integrators for Hamiltonian PDEs. [Doctoral Dissertation]. Old Dominion University; 2002. Available from: 9780493883670 ; https://digitalcommons.odu.edu/computerscience_etds/76


Uniwersytet im. Adama Mickiewicza w Poznaniu

9. Ratkiewicz, Bogusław. Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej .

Degree: 2011, Uniwersytet im. Adama Mickiewicza w Poznaniu

 Przedmiotem badań pracy są dyskretyzacje wybranych modeli fizycznych, które w większości są jednowymiarowymi układami hamiltonowskimi. , gdzie V(x) jest potencjałem, a kropka i prim oznaczają… (more)

Subjects/Keywords: całkowanie geometryczne; geometric numerical integration; całka energii; energy integral; metoda dyskretnego gradientu; discrete gradient method; lokalnie dokładne schematy numeryczne; locally exact numerical schemes; metody symplektyczne; symplectic integrators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ratkiewicz, B. (2011). Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej . (Doctoral Dissertation). Uniwersytet im. Adama Mickiewicza w Poznaniu. Retrieved from http://hdl.handle.net/10593/1042

Chicago Manual of Style (16th Edition):

Ratkiewicz, Bogusław. “Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej .” 2011. Doctoral Dissertation, Uniwersytet im. Adama Mickiewicza w Poznaniu. Accessed October 31, 2020. http://hdl.handle.net/10593/1042.

MLA Handbook (7th Edition):

Ratkiewicz, Bogusław. “Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej .” 2011. Web. 31 Oct 2020.

Vancouver:

Ratkiewicz B. Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej . [Internet] [Doctoral dissertation]. Uniwersytet im. Adama Mickiewicza w Poznaniu; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10593/1042.

Council of Science Editors:

Ratkiewicz B. Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej . [Doctoral Dissertation]. Uniwersytet im. Adama Mickiewicza w Poznaniu; 2011. Available from: http://hdl.handle.net/10593/1042

10. Vaillant, Timothée. Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta.

Degree: Docteur es, Astronomie et Astrophysique, 2018, Paris Sciences et Lettres (ComUE)

Le sujet de cette thèse est l'étude de la rotation à long terme des corps célestes.La première partie est consacrée à l’étude de la rotation… (more)

Subjects/Keywords: Mécanique céleste; Rotation des corps solides; Cérès; Vesta; Intégrateurs symplectiques; Algèbre de Lie; Celestial mechanics; Rotation of rigid bodies; Ceres; Vesta; Symplectic integrators; Lie algebra; 520

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vaillant, T. (2018). Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta. (Doctoral Dissertation). Paris Sciences et Lettres (ComUE). Retrieved from http://www.theses.fr/2018PSLEO005

Chicago Manual of Style (16th Edition):

Vaillant, Timothée. “Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta.” 2018. Doctoral Dissertation, Paris Sciences et Lettres (ComUE). Accessed October 31, 2020. http://www.theses.fr/2018PSLEO005.

MLA Handbook (7th Edition):

Vaillant, Timothée. “Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta.” 2018. Web. 31 Oct 2020.

Vancouver:

Vaillant T. Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres (ComUE); 2018. [cited 2020 Oct 31]. Available from: http://www.theses.fr/2018PSLEO005.

Council of Science Editors:

Vaillant T. Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta. [Doctoral Dissertation]. Paris Sciences et Lettres (ComUE); 2018. Available from: http://www.theses.fr/2018PSLEO005

11. Μονοβασίλης, Θεόδωρος. Συμπλεκτικοί ολοκληρωτές για την αριθμητική επίλυση προβλημάτων με περιοδική συμπεριφορά της λύσης.

Degree: 2006, University of Peloponesse; Πανεπιστήμιο Πελοποννήσου

This thesis deals with the numerical solution of the Hamiltonian problems by using symplectic integrators. More specifically, explicit symplectic methods are examined and constructed, in… (more)

Subjects/Keywords: Αριθμητική επίλυση διαφορικών εξισώσεων; Συμπλεκτικοί ολοκληρωτές; Χαμιλτονιανά συστήματα; Τριγωνομετρικά προσαρμοσμένες μέθοδοι; Εκθετικά προσαρμοσμένες μέθοδοι; Εξίσωση schrodinger; Numerical solution of differential equations; Symplectic integrators; Hamiltonian systems; Trigonometrically fitted methods; Exponentially fitted methods; Schrodinger equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Μονοβασίλης, . . (2006). Συμπλεκτικοί ολοκληρωτές για την αριθμητική επίλυση προβλημάτων με περιοδική συμπεριφορά της λύσης. (Thesis). University of Peloponesse; Πανεπιστήμιο Πελοποννήσου. Retrieved from http://hdl.handle.net/10442/hedi/14373

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Μονοβασίλης, Θεόδωρος. “Συμπλεκτικοί ολοκληρωτές για την αριθμητική επίλυση προβλημάτων με περιοδική συμπεριφορά της λύσης.” 2006. Thesis, University of Peloponesse; Πανεπιστήμιο Πελοποννήσου. Accessed October 31, 2020. http://hdl.handle.net/10442/hedi/14373.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Μονοβασίλης, Θεόδωρος. “Συμπλεκτικοί ολοκληρωτές για την αριθμητική επίλυση προβλημάτων με περιοδική συμπεριφορά της λύσης.” 2006. Web. 31 Oct 2020.

Vancouver:

Μονοβασίλης . Συμπλεκτικοί ολοκληρωτές για την αριθμητική επίλυση προβλημάτων με περιοδική συμπεριφορά της λύσης. [Internet] [Thesis]. University of Peloponesse; Πανεπιστήμιο Πελοποννήσου; 2006. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10442/hedi/14373.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Μονοβασίλης . Συμπλεκτικοί ολοκληρωτές για την αριθμητική επίλυση προβλημάτων με περιοδική συμπεριφορά της λύσης. [Thesis]. University of Peloponesse; Πανεπιστήμιο Πελοποννήσου; 2006. Available from: http://hdl.handle.net/10442/hedi/14373

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.