Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( mechanosensor). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Kale, Girish. Etude de l'effet de l'orientation des forces sur la dynamique de  l'adhésion au cours de la morphogenèse tissulaire : Studying the effect of oriented forces on adhesion dynamics during tissue morphogenesis.

Degree: Docteur es, Biologie du développement, 2017, Aix Marseille Université

Les organismes multicellulaires, tels les mammifères, possèdent plusieurs organes constitués de couches de cellules, par exemple la peau ou l’intestin. Ces couches, appelées épithelia, fonctionnent comme des barrières. Une protéine nommée E-Cadhérine agit comme une colle moléculaire et procure l’adhésion cellule-cellule qui est nécessaire à la fonction de barrière. Les épithelia changent aussi leur structure pendant le développement de l’organisme ou pendant les maladies. Nous étudions un exemple d’un tel changement structurel. Pendant le développement de la mouche du vinaigre, à un stade précis, le tissu épithélial change de forme au travers d’un réarrangement des cellules. C’est un procédé complexe, car les cellules doivent maintenir l’adhésion tout en échangeant de voisin. Les forces requises pour ce procédé sont générées par une activité et une distribution spécifiques des moteurs moléculaires nommés Myosine. Nous voulons comprendre comment la distribution de la Myosine change l’adhésion entre les cellules pour permettre cet échange de voisins. Nous répondons à cette question en changeant la distribution de la Myosine et en regardant l’effet sur la E-Cadhérine. Sur la base de nos expériences nous sommes à même de conclure que l’orientation des forces est un facteur important (et précédemment négligé) de leur effet sur l’adhésion.

Multicellular organisms, such as mammals, have several organs that are made of sheets of cells e.g. skin or intestine. These sheets, called epithelia, function as barriers. A protein called E-Cadherin acts as molecular glue and mediates cell-cell adhesion that is essential for barrier function. Epithelia also change their structure during organismal development or during diseases. We are looking at one such example of structural change. During embryonic development of fruit fly, at specific stage, epithelial tissue changes shape due to cell mixing. It is a complex process, as cells have to maintain adhesion all around while they exchange neighbors. The forces required for this process are generated by specific activity and distribution of molecular motors, called Myosin. We want to understand how Myosin distribution changes adhesion between cells to allow neighbor exchange. We answer this question by changing the distribution of Myosin and seeing its effects on E-Cadherin. Based on our experiments we could conclude that orientation of forces is an important (and previously neglected) factor to predict their effects on adhesion.

Advisors/Committee Members: Lecuit, Thomas (thesis director), Lenne, Pierre-François (thesis director).

Subjects/Keywords: E-Cadhérine; Vinculine; Mechanosensor; E-Cadherin; Vinculin; Mechanosenor; 570

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kale, G. (2017). Etude de l'effet de l'orientation des forces sur la dynamique de  l'adhésion au cours de la morphogenèse tissulaire : Studying the effect of oriented forces on adhesion dynamics during tissue morphogenesis. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2017AIXM0072

Chicago Manual of Style (16th Edition):

Kale, Girish. “Etude de l'effet de l'orientation des forces sur la dynamique de  l'adhésion au cours de la morphogenèse tissulaire : Studying the effect of oriented forces on adhesion dynamics during tissue morphogenesis.” 2017. Doctoral Dissertation, Aix Marseille Université. Accessed August 22, 2019. http://www.theses.fr/2017AIXM0072.

MLA Handbook (7th Edition):

Kale, Girish. “Etude de l'effet de l'orientation des forces sur la dynamique de  l'adhésion au cours de la morphogenèse tissulaire : Studying the effect of oriented forces on adhesion dynamics during tissue morphogenesis.” 2017. Web. 22 Aug 2019.

Vancouver:

Kale G. Etude de l'effet de l'orientation des forces sur la dynamique de  l'adhésion au cours de la morphogenèse tissulaire : Studying the effect of oriented forces on adhesion dynamics during tissue morphogenesis. [Internet] [Doctoral dissertation]. Aix Marseille Université 2017. [cited 2019 Aug 22]. Available from: http://www.theses.fr/2017AIXM0072.

Council of Science Editors:

Kale G. Etude de l'effet de l'orientation des forces sur la dynamique de  l'adhésion au cours de la morphogenèse tissulaire : Studying the effect of oriented forces on adhesion dynamics during tissue morphogenesis. [Doctoral Dissertation]. Aix Marseille Université 2017. Available from: http://www.theses.fr/2017AIXM0072


University of Texas Medical Branch – Galveston

2. [No author]. The nanomechanics of polycystin-1: A kidney mechanosensor .

Degree: 2010, University of Texas Medical Branch – Galveston

Mutations in polycystin-1 (PC1) can cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is a leading cause of renal failure. The available evidence suggests that PC1 acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix. PC1 is a large membrane protein that has a long N-terminal extracellular region (about 3000 aa) with a multimodular structure including sixteen Ig-like PKD domains, which are targeted by many naturally occurring missense mutations. Nothing is known about the effects of these mutations on the biophysical properties of PKD domains. In addition, PC1 is expressed along the renal tubule, where it is exposed to a wide range of concentration of urea. Urea is known to destabilize proteins. Other osmolytes found in the kidney such as sorbitol, betaine and TMAO are known to counteract urea¡¯s negative effects on proteins. Nothing is known about how the mechanical properties of PC1 are affected by these osmolytes. Here I use nano-mechanical techniques to study the effects of missense mutations and effects of denaturants and various osmolytes on the mechanical properties of PKD domains. Several missense mutations were found to alter the mechanical stability of PKD domains resulting in distinct mechanical phenotypes. Based on these findings, I hypothesize that missense mutations may cause ADPKD by altering the stability of the PC1 ectodomain, thereby perturbing its ability to sense mechanical signals. I also found that urea has a significant impact on both the mechanical stability and refolding rate of PKD domains. It not only lowers their mechanical stability, but also slows down their refolding rate. Moreover, several osmolytes were found to effectively counteract the effects of urea. Our data provide the evidence that naturally occurring osmolytes can help to maintain Polycystin-1 mechanical stability and folding kinetics. This study has the potential to provide new therapeutic approaches (e.g. through the use of osmolytes or chemical chaperones) for rescuing destabilized and misfolded PKD domains. Advisors/Committee Members: Simon A. Lewis (advisor), Roger B. Sutton (committeeMember), Paul J. Boor (committeeMember), Guillermo A. Altenberg (committeeMember), Andres F. Oberhauser (committeeMember).

Subjects/Keywords: polycystin-1; osmolyte; Missense mutations; mechanosensor; atomic force microscopy; ADPKD

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

author], [. (2010). The nanomechanics of polycystin-1: A kidney mechanosensor . (Thesis). University of Texas Medical Branch – Galveston. Retrieved from http://hdl.handle.net/2152.3/143

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

author], [No. “The nanomechanics of polycystin-1: A kidney mechanosensor .” 2010. Thesis, University of Texas Medical Branch – Galveston. Accessed August 22, 2019. http://hdl.handle.net/2152.3/143.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

author], [No. “The nanomechanics of polycystin-1: A kidney mechanosensor .” 2010. Web. 22 Aug 2019.

Vancouver:

author] [. The nanomechanics of polycystin-1: A kidney mechanosensor . [Internet] [Thesis]. University of Texas Medical Branch – Galveston; 2010. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/2152.3/143.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. The nanomechanics of polycystin-1: A kidney mechanosensor . [Thesis]. University of Texas Medical Branch – Galveston; 2010. Available from: http://hdl.handle.net/2152.3/143

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Arizona

3. Brown, Robert Vincent. The Regulatory Significance and Molecular Targeting of Novel Non-B-DNA Secondary Structures Formed from the PDGFR-Beta Core Promoter Nuclease Hypersensitivity Element .

Degree: 2014, University of Arizona

Herein we describe the regulatory significance and molecular targeting of novel non-B-DNA secondary structures formed from the PDGFR-Beta core promoter nuclease hypersensitivity element. Advisors/Committee Members: Hurley, Laurence H (advisor), Hurley, Laurence H. (committeemember), Smith, Catharine L. (committeemember), Daekyu, Sun (committeemember), Yang, Danzhou (committeemember), Wondrak, Georg T. (committeemember).

Subjects/Keywords: i-motif; mechanosensor; molecular switch; PDGFR-β; Transcriptional regulation; Pharmaceutical Sciences; G-quadruplex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brown, R. V. (2014). The Regulatory Significance and Molecular Targeting of Novel Non-B-DNA Secondary Structures Formed from the PDGFR-Beta Core Promoter Nuclease Hypersensitivity Element . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/337361

Chicago Manual of Style (16th Edition):

Brown, Robert Vincent. “The Regulatory Significance and Molecular Targeting of Novel Non-B-DNA Secondary Structures Formed from the PDGFR-Beta Core Promoter Nuclease Hypersensitivity Element .” 2014. Doctoral Dissertation, University of Arizona. Accessed August 22, 2019. http://hdl.handle.net/10150/337361.

MLA Handbook (7th Edition):

Brown, Robert Vincent. “The Regulatory Significance and Molecular Targeting of Novel Non-B-DNA Secondary Structures Formed from the PDGFR-Beta Core Promoter Nuclease Hypersensitivity Element .” 2014. Web. 22 Aug 2019.

Vancouver:

Brown RV. The Regulatory Significance and Molecular Targeting of Novel Non-B-DNA Secondary Structures Formed from the PDGFR-Beta Core Promoter Nuclease Hypersensitivity Element . [Internet] [Doctoral dissertation]. University of Arizona; 2014. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/10150/337361.

Council of Science Editors:

Brown RV. The Regulatory Significance and Molecular Targeting of Novel Non-B-DNA Secondary Structures Formed from the PDGFR-Beta Core Promoter Nuclease Hypersensitivity Element . [Doctoral Dissertation]. University of Arizona; 2014. Available from: http://hdl.handle.net/10150/337361

.