Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

Language: English

You searched for subject:( lithium dendrite). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Tikekar, Mukul Deepak. The effect of ion transport and electrolyte rheology on morphological instabilities in electrodeposition.

Degree: PhD, Mechanical Engineering, 2017, Cornell University

 Morphological instabilities in electrodeposition have long been studied due to their important applications in electroplating and energy storage. They are receiving increased attention due to… (more)

Subjects/Keywords: Chemical engineering; Mechanical engineering; electroconvection; electrodeposition; instabilities; lithium dendrite; Lithium Battery; Electrolyte

…W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(… …Z., Xiao, J. & Liu, X. Dendrite-free lithium deposition via selfhealing electrostatic… …dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries… …thought about Li dendrite formation 1.1.1 Unstable ion transport drives unstable deposition… …2.9 2.10 3.1 Schematic illustrating different stages of dendrite growth on a planar Li… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tikekar, M. D. (2017). The effect of ion transport and electrolyte rheology on morphological instabilities in electrodeposition. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/56970

Chicago Manual of Style (16th Edition):

Tikekar, Mukul Deepak. “The effect of ion transport and electrolyte rheology on morphological instabilities in electrodeposition.” 2017. Doctoral Dissertation, Cornell University. Accessed October 21, 2020. http://hdl.handle.net/1813/56970.

MLA Handbook (7th Edition):

Tikekar, Mukul Deepak. “The effect of ion transport and electrolyte rheology on morphological instabilities in electrodeposition.” 2017. Web. 21 Oct 2020.

Vancouver:

Tikekar MD. The effect of ion transport and electrolyte rheology on morphological instabilities in electrodeposition. [Internet] [Doctoral dissertation]. Cornell University; 2017. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/1813/56970.

Council of Science Editors:

Tikekar MD. The effect of ion transport and electrolyte rheology on morphological instabilities in electrodeposition. [Doctoral Dissertation]. Cornell University; 2017. Available from: http://hdl.handle.net/1813/56970


Cornell University

2. Tu, Zhengyuan. Nanoporous Polymer/Ceramic Separator Electrolyte For Lithium Metal Battery Applications.

Degree: M.S., Materials Science and Engineering, Materials Science and Engineering, 2014, Cornell University

Subjects/Keywords: lithium metal batteries; nanoporous composite; dendrite

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tu, Z. (2014). Nanoporous Polymer/Ceramic Separator Electrolyte For Lithium Metal Battery Applications. (Masters Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/37153

Chicago Manual of Style (16th Edition):

Tu, Zhengyuan. “Nanoporous Polymer/Ceramic Separator Electrolyte For Lithium Metal Battery Applications.” 2014. Masters Thesis, Cornell University. Accessed October 21, 2020. http://hdl.handle.net/1813/37153.

MLA Handbook (7th Edition):

Tu, Zhengyuan. “Nanoporous Polymer/Ceramic Separator Electrolyte For Lithium Metal Battery Applications.” 2014. Web. 21 Oct 2020.

Vancouver:

Tu Z. Nanoporous Polymer/Ceramic Separator Electrolyte For Lithium Metal Battery Applications. [Internet] [Masters thesis]. Cornell University; 2014. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/1813/37153.

Council of Science Editors:

Tu Z. Nanoporous Polymer/Ceramic Separator Electrolyte For Lithium Metal Battery Applications. [Masters Thesis]. Cornell University; 2014. Available from: http://hdl.handle.net/1813/37153


Delft University of Technology

3. Sreekumar Menon, Ashok (author). Strategies for Dendrite-free Lithium and Sodium Metal Anodes.

Degree: 2017, Delft University of Technology

 As the public demand for electric vehicles and consumer electronics grows at an exponential rate, traditional energy storage systems like lithium-ion batteries are proving to… (more)

Subjects/Keywords: Lithium metal battery; dendrite formation; atomic layer deposition; 3D porous nickel

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sreekumar Menon, A. (. (2017). Strategies for Dendrite-free Lithium and Sodium Metal Anodes. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:3a3a1aad-4fa0-4af2-a189-5ace3e73a05f

Chicago Manual of Style (16th Edition):

Sreekumar Menon, Ashok (author). “Strategies for Dendrite-free Lithium and Sodium Metal Anodes.” 2017. Masters Thesis, Delft University of Technology. Accessed October 21, 2020. http://resolver.tudelft.nl/uuid:3a3a1aad-4fa0-4af2-a189-5ace3e73a05f.

MLA Handbook (7th Edition):

Sreekumar Menon, Ashok (author). “Strategies for Dendrite-free Lithium and Sodium Metal Anodes.” 2017. Web. 21 Oct 2020.

Vancouver:

Sreekumar Menon A(. Strategies for Dendrite-free Lithium and Sodium Metal Anodes. [Internet] [Masters thesis]. Delft University of Technology; 2017. [cited 2020 Oct 21]. Available from: http://resolver.tudelft.nl/uuid:3a3a1aad-4fa0-4af2-a189-5ace3e73a05f.

Council of Science Editors:

Sreekumar Menon A(. Strategies for Dendrite-free Lithium and Sodium Metal Anodes. [Masters Thesis]. Delft University of Technology; 2017. Available from: http://resolver.tudelft.nl/uuid:3a3a1aad-4fa0-4af2-a189-5ace3e73a05f


Delft University of Technology

4. van de Lagemaat, Rutger (author). Unweaving dendrite formation through in operando synchrotron X-ray diffraction study of individual lithium crystallites.

Degree: 2018, Delft University of Technology

  In the search for renewable energy storage materials, lithium metal has been considered the ideal electrode material for decades, due to its high specific… (more)

Subjects/Keywords: In Operando; Lithium Metal Anode; Synchrotron XRD; High Capacity Batteries; Dendrite

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

van de Lagemaat, R. (. (2018). Unweaving dendrite formation through in operando synchrotron X-ray diffraction study of individual lithium crystallites. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:c06eff9f-a3bd-43fa-872f-c58c233ea5dd

Chicago Manual of Style (16th Edition):

van de Lagemaat, Rutger (author). “Unweaving dendrite formation through in operando synchrotron X-ray diffraction study of individual lithium crystallites.” 2018. Masters Thesis, Delft University of Technology. Accessed October 21, 2020. http://resolver.tudelft.nl/uuid:c06eff9f-a3bd-43fa-872f-c58c233ea5dd.

MLA Handbook (7th Edition):

van de Lagemaat, Rutger (author). “Unweaving dendrite formation through in operando synchrotron X-ray diffraction study of individual lithium crystallites.” 2018. Web. 21 Oct 2020.

Vancouver:

van de Lagemaat R(. Unweaving dendrite formation through in operando synchrotron X-ray diffraction study of individual lithium crystallites. [Internet] [Masters thesis]. Delft University of Technology; 2018. [cited 2020 Oct 21]. Available from: http://resolver.tudelft.nl/uuid:c06eff9f-a3bd-43fa-872f-c58c233ea5dd.

Council of Science Editors:

van de Lagemaat R(. Unweaving dendrite formation through in operando synchrotron X-ray diffraction study of individual lithium crystallites. [Masters Thesis]. Delft University of Technology; 2018. Available from: http://resolver.tudelft.nl/uuid:c06eff9f-a3bd-43fa-872f-c58c233ea5dd


Georgia Tech

5. Goodman, Johanna Karolina Stark. The morphology and coulombic efficiency of lithium metal anodes.

Degree: PhD, Chemical and Biomolecular Engineering, 2014, Georgia Tech

 Since their commercialization in 1990, the electrodes of the lithium-ion battery have remained fundamentally the same. While energy density improvements have come from reducing the… (more)

Subjects/Keywords: Battery; Lithium; Lithium metal anode; Ionic liquid; Dendrite; Whisker

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Goodman, J. K. S. (2014). The morphology and coulombic efficiency of lithium metal anodes. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/53398

Chicago Manual of Style (16th Edition):

Goodman, Johanna Karolina Stark. “The morphology and coulombic efficiency of lithium metal anodes.” 2014. Doctoral Dissertation, Georgia Tech. Accessed October 21, 2020. http://hdl.handle.net/1853/53398.

MLA Handbook (7th Edition):

Goodman, Johanna Karolina Stark. “The morphology and coulombic efficiency of lithium metal anodes.” 2014. Web. 21 Oct 2020.

Vancouver:

Goodman JKS. The morphology and coulombic efficiency of lithium metal anodes. [Internet] [Doctoral dissertation]. Georgia Tech; 2014. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/1853/53398.

Council of Science Editors:

Goodman JKS. The morphology and coulombic efficiency of lithium metal anodes. [Doctoral Dissertation]. Georgia Tech; 2014. Available from: http://hdl.handle.net/1853/53398


Texas A&M University

6. Kalan, Michael Andrew. A Multi-Pronged, Noninvasive Probing of Electrodeposition in Li-Ion Batteries.

Degree: MS, Mechanical Engineering, 2017, Texas A&M University

Lithium ion batteries hold the potential to play a key role in meeting our future and increasing energy storage needs. Lithium ion batteries have the… (more)

Subjects/Keywords: lithium ion battery; electrodeposition; dendrite growth; electrochemical impedance spectroscopy; python; graphite electrode; equivalent circuit; lithium plating

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kalan, M. A. (2017). A Multi-Pronged, Noninvasive Probing of Electrodeposition in Li-Ion Batteries. (Masters Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/161539

Chicago Manual of Style (16th Edition):

Kalan, Michael Andrew. “A Multi-Pronged, Noninvasive Probing of Electrodeposition in Li-Ion Batteries.” 2017. Masters Thesis, Texas A&M University. Accessed October 21, 2020. http://hdl.handle.net/1969.1/161539.

MLA Handbook (7th Edition):

Kalan, Michael Andrew. “A Multi-Pronged, Noninvasive Probing of Electrodeposition in Li-Ion Batteries.” 2017. Web. 21 Oct 2020.

Vancouver:

Kalan MA. A Multi-Pronged, Noninvasive Probing of Electrodeposition in Li-Ion Batteries. [Internet] [Masters thesis]. Texas A&M University; 2017. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/1969.1/161539.

Council of Science Editors:

Kalan MA. A Multi-Pronged, Noninvasive Probing of Electrodeposition in Li-Ion Batteries. [Masters Thesis]. Texas A&M University; 2017. Available from: http://hdl.handle.net/1969.1/161539


University of California – Berkeley

7. Harry, Katherine Joann. Lithium dendrite growth through solid polymer electrolyte membranes.

Degree: Materials Science & Engineering, 2016, University of California – Berkeley

 The next generation of rechargeable batteries must have significantly improved gravimetric and volumetric energy densities while maintaining a long cycle life and a low risk… (more)

Subjects/Keywords: Materials Science; Chemical engineering; Battery; Block copolymer electrolyte; Lithium dendrite; Lithium globule; Solid polymer electrolyte; X-ray microtomography

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Harry, K. J. (2016). Lithium dendrite growth through solid polymer electrolyte membranes. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/9xs390n4

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Harry, Katherine Joann. “Lithium dendrite growth through solid polymer electrolyte membranes.” 2016. Thesis, University of California – Berkeley. Accessed October 21, 2020. http://www.escholarship.org/uc/item/9xs390n4.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Harry, Katherine Joann. “Lithium dendrite growth through solid polymer electrolyte membranes.” 2016. Web. 21 Oct 2020.

Vancouver:

Harry KJ. Lithium dendrite growth through solid polymer electrolyte membranes. [Internet] [Thesis]. University of California – Berkeley; 2016. [cited 2020 Oct 21]. Available from: http://www.escholarship.org/uc/item/9xs390n4.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Harry KJ. Lithium dendrite growth through solid polymer electrolyte membranes. [Thesis]. University of California – Berkeley; 2016. Available from: http://www.escholarship.org/uc/item/9xs390n4

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

8. Ho, Szushen. Layer-by-layer Assembly of Nanocomposites for Energy Applications.

Degree: PhD, Chemical Engineering, 2011, University of Michigan

 In the dissertation we utilized the versatility of layer-by-layer assembly to explore the possibilities of improving membrane characteristics in energy-related applications using such technique. Nanocomposite… (more)

Subjects/Keywords: Layer-by-Layer Assembly; Nanocomposite Membranes; Lithium Battery; Zeolite-L; Ionic Conductivity; Dendrite Inhibition; Chemical Engineering; Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ho, S. (2011). Layer-by-layer Assembly of Nanocomposites for Energy Applications. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/84629

Chicago Manual of Style (16th Edition):

Ho, Szushen. “Layer-by-layer Assembly of Nanocomposites for Energy Applications.” 2011. Doctoral Dissertation, University of Michigan. Accessed October 21, 2020. http://hdl.handle.net/2027.42/84629.

MLA Handbook (7th Edition):

Ho, Szushen. “Layer-by-layer Assembly of Nanocomposites for Energy Applications.” 2011. Web. 21 Oct 2020.

Vancouver:

Ho S. Layer-by-layer Assembly of Nanocomposites for Energy Applications. [Internet] [Doctoral dissertation]. University of Michigan; 2011. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/2027.42/84629.

Council of Science Editors:

Ho S. Layer-by-layer Assembly of Nanocomposites for Energy Applications. [Doctoral Dissertation]. University of Michigan; 2011. Available from: http://hdl.handle.net/2027.42/84629

.