Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · date | New search

You searched for subject:( hiperplano). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Francisco Josà Calixto de Sousa. CombinaÃÃes afins.

Degree: Master, 2013, Universidade Federal do Ceará

Neste trabalho, consideramos combinaÃÃes afins de vetores de um espaÃo vetorial com especiais aplicaÃÃes no ensino mÃdio atravÃs da mÃdia aritmÃtica ponderada e da desigualdade de Jensen. Verificamos caracterÃsticas de transformaÃÃes lineares de conjuntos especÃficos nos espaÃos vetoriais como conjuntos convexos e variedades afins, atravÃs do nÃcleo e da imagem das transformaÃÃes. Estabelecemos relaÃÃes entre transformaÃÃes afins, combinaÃÃes afins e transformaÃÃes lineares. Discutimos a dimensÃo do hiperplano relacionando-o como variedade afim. Vemos que todo subespaÃo vetorial de Rn com dimensÃo n - 1 Ã um hiperplano, assim como o nÃcleo de um funcional linear.

In this paper, we consider combinations of related vectors of a vector space with special applications in high school through the weighted arithmetic mean and the Jensen inequality. We observed characteristics of specific sets of linear transformations in the vector spaces as convex sets and related varieties through the core and image transformations. Established relations between affine transformations, combinations thereof and linear transformations. We discuss the size of the hyperplane relating it as affine variety. We see that all of Rn vector subspace with dimension n - 1 is a hyperplane, as the core of a linear functional.

Advisors/Committee Members: JoÃo Montenegro de Miranda, Marcelo Ferreira de Melo, Marcos Ferreira de Melo.

Subjects/Keywords: MATEMATICA; variedade afim; transformaÃÃo linear; transformaÃÃo afim e hiperplano; combination order; variety in order; linear transformation; transformation in order and hyperplane; Ãlgebra linear; Ensino mÃdio; Numeros reais; Real numbers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sousa, F. J. C. d. (2013). CombinaÃÃes afins. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10039 ;

Chicago Manual of Style (16th Edition):

Sousa, Francisco Josà Calixto de. “CombinaÃÃes afins.” 2013. Masters Thesis, Universidade Federal do Ceará. Accessed October 23, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10039 ;.

MLA Handbook (7th Edition):

Sousa, Francisco Josà Calixto de. “CombinaÃÃes afins.” 2013. Web. 23 Oct 2020.

Vancouver:

Sousa FJCd. CombinaÃÃes afins. [Internet] [Masters thesis]. Universidade Federal do Ceará 2013. [cited 2020 Oct 23]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10039 ;.

Council of Science Editors:

Sousa FJCd. CombinaÃÃes afins. [Masters Thesis]. Universidade Federal do Ceará 2013. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10039 ;

2. Diego Cunha Nery. Conjuntos convexos e suas aplicaÃÃes no ensino mÃdio.

Degree: Master, 2013, Universidade Federal do Ceará

Neste trabalho, consideramos o conceito de segmento de reta como uma introduÃÃo ao conceito de conjunto convexo e suas aplicaÃÃes no R2 e R3, conceito esse reforÃado com a prova do baricentro do triÃngulo. Calculamos a relaÃÃo de posiÃÃo entre um ponto e um segmento de reta. Definimos o conceito de cone e mostramos os diferentes tipos de cone com alguns exemplos. Definimos a envoltÃria convexa no plano e no espaÃo podendo assim estabelecer a relaÃÃo entre um ponto e um triÃngulo e a relaÃÃo entre um ponto e um tetraedro. Apresentamos o conceito de hiperplano e finalizamos relacionando a convexidade com a simetria.

In this paper, we consider the concept of line segment as an introduction to the concept of convex set and its applications, this concept reinforced by the evidence of centroid of the triangle. We calculate the relative position between a point and a line segment. We define the cone concept and show the different types of cone with some examples. We define the convex envelope in the plane and in space can then estabilish the relationship between a point and a triangle and the relationship between a point and a tetrahedron. Introducing the concept of hyperplane and finished relating the convexity with symmetry.

Advisors/Committee Members: JoÃo Montenegro de Miranda, Marcelo Ferreira de Melo, Marcos Ferreira de Melo.

Subjects/Keywords: hyperplane; cone; straight; simetria; hiperplano; cone; reta; MATEMATICA; symmetry; Conjuntos convexos; Ãlgebra linear; Convex sets; Linear algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nery, D. C. (2013). Conjuntos convexos e suas aplicaÃÃes no ensino mÃdio. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10097 ;

Chicago Manual of Style (16th Edition):

Nery, Diego Cunha. “Conjuntos convexos e suas aplicaÃÃes no ensino mÃdio.” 2013. Masters Thesis, Universidade Federal do Ceará. Accessed October 23, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10097 ;.

MLA Handbook (7th Edition):

Nery, Diego Cunha. “Conjuntos convexos e suas aplicaÃÃes no ensino mÃdio.” 2013. Web. 23 Oct 2020.

Vancouver:

Nery DC. Conjuntos convexos e suas aplicaÃÃes no ensino mÃdio. [Internet] [Masters thesis]. Universidade Federal do Ceará 2013. [cited 2020 Oct 23]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10097 ;.

Council of Science Editors:

Nery DC. Conjuntos convexos e suas aplicaÃÃes no ensino mÃdio. [Masters Thesis]. Universidade Federal do Ceará 2013. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10097 ;

3. Quintero Ospina , Rodolfo Alexander. Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria .

Degree: 2013, Universidad de los Andes

La conjetura de Martin Kneser, y posteriormente, la prueba de la misma por László Lovász, fueron acaso los mayores incentivos para prestar seria atención a las aplicaciones de la topología (en particular, la algebraica) en combinatoria. Si consideramos la familia de todos los k-subconjuntos de un conjunto de n elementos, podemos particionar tal familia en n-2k+2 clases (n-2k+2) tales que ninguna pareja de k-subconjuntos dentro de una misma clase es disjunta. La conjetura de Kneser afirmaba que no era posible particionar la familia en n-2k+1 clases y que tuvieran la misma propiedad anterior. Veinte años después de haber sido formulada László Lovász probó la conjetura usando el teorema de Borsuk-Ulam. Queremos ver en esta tesis dos demostraciones de tal conjetura, una de Bárány y, la original de Lovázs. Además, hablaremos en el artículo del índice de espacios con acciones de Z_2, productos borrados, “joins” borrados y su aplicación al teorema de no encajamiento de complejos simpliciales. Advisors/Committee Members: Angel Cardenas Jairo Andres (advisor).

Subjects/Keywords: Kneser; conjetura; complejo simplicial; Borsuk; Ulam; Lovázs; grafo; índice; producto borrado; join borrado; función equivariante; encajamiento; topología; combinatoria; homología; grupo fundamental; espacio recubridor; levantamiento; hiperplano; politopo; convexo; coloramiento; conjecture; simplicial complex; deleted join; equivariant function; index; graph; embedding; topology; combinatorics; homology; fundamental group; lift; polytope; convex; coloring; hyperplane; covering space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Quintero Ospina , R. A. (2013). Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria . (Thesis). Universidad de los Andes. Retrieved from http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Quintero Ospina , Rodolfo Alexander. “Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria .” 2013. Thesis, Universidad de los Andes. Accessed October 23, 2020. http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Quintero Ospina , Rodolfo Alexander. “Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria .” 2013. Web. 23 Oct 2020.

Vancouver:

Quintero Ospina RA. Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria . [Internet] [Thesis]. Universidad de los Andes; 2013. [cited 2020 Oct 23]. Available from: http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Quintero Ospina RA. Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria . [Thesis]. Universidad de los Andes; 2013. Available from: http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.