Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( equivariant function). Showing records 1 – 7 of 7 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Uppsala University

1. Hössjer, Emil. Equivariant Localization in Supersymmetric Quantum Mechanics.

Degree: Theoretical Physics, 2018, Uppsala University

  We review equivariant localization and through the Feynman formalism of quantum mechanics motivate its role as a tool for calculating partition functions. We also… (more)

Subjects/Keywords: Equivariant cohomology; localization; Cartan model; quantum mechanics; supersymmetry; partition function; Physical Sciences; Fysik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hössjer, E. (2018). Equivariant Localization in Supersymmetric Quantum Mechanics. (Thesis). Uppsala University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355329

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hössjer, Emil. “Equivariant Localization in Supersymmetric Quantum Mechanics.” 2018. Thesis, Uppsala University. Accessed September 26, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355329.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hössjer, Emil. “Equivariant Localization in Supersymmetric Quantum Mechanics.” 2018. Web. 26 Sep 2020.

Vancouver:

Hössjer E. Equivariant Localization in Supersymmetric Quantum Mechanics. [Internet] [Thesis]. Uppsala University; 2018. [cited 2020 Sep 26]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355329.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hössjer E. Equivariant Localization in Supersymmetric Quantum Mechanics. [Thesis]. Uppsala University; 2018. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355329

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Adelaide

2. Lu, Rongmin. Regularized equivariant Euler classes and gamma functions.

Degree: 2008, University of Adelaide

 We consider the regularization of some equivariant Euler classes of certain infinite-dimensional vector bundles over a finite-dimensional manifold M using the framework of zeta-regularized products… (more)

Subjects/Keywords: loop spaces; characteristic classes; equivariant; cohomology; zeta-function; regularization; double gamma function; elliptic genera; Loop spaces. Characteristic classes. Gamma functions.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lu, R. (2008). Regularized equivariant Euler classes and gamma functions. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/50479

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lu, Rongmin. “Regularized equivariant Euler classes and gamma functions.” 2008. Thesis, University of Adelaide. Accessed September 26, 2020. http://hdl.handle.net/2440/50479.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lu, Rongmin. “Regularized equivariant Euler classes and gamma functions.” 2008. Web. 26 Sep 2020.

Vancouver:

Lu R. Regularized equivariant Euler classes and gamma functions. [Internet] [Thesis]. University of Adelaide; 2008. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2440/50479.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lu R. Regularized equivariant Euler classes and gamma functions. [Thesis]. University of Adelaide; 2008. Available from: http://hdl.handle.net/2440/50479

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

3. Biglands, Adrian. Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay.

Degree: MS, Department of Mathematical and Statistical Sciences, 2009, University of Alberta

 We apply the so-called S1-equivariant degree to study the occurrence of {\it Hopf bifurcations} in a system of nonlinear ordinary differential equations with delay of… (more)

Subjects/Keywords: G-space, orthogonal G-representation, ODE, periodic function, locally uniformly asymptotically linear, asymptotic derivative at infinity, branch bifurcating from infinity, characteristic equation at infinity, characteristic root, isolated center at infinity, Sobolev space, Nemytsky operator, Hopf bifurcation from infinity, auxiliary function, Brouwer degree, measure of non-compactness, compact operator,compact field, S^1-equivariant degree, crossing numbers.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Biglands, A. (2009). Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/cft848q762

Chicago Manual of Style (16th Edition):

Biglands, Adrian. “Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay.” 2009. Masters Thesis, University of Alberta. Accessed September 26, 2020. https://era.library.ualberta.ca/files/cft848q762.

MLA Handbook (7th Edition):

Biglands, Adrian. “Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay.” 2009. Web. 26 Sep 2020.

Vancouver:

Biglands A. Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay. [Internet] [Masters thesis]. University of Alberta; 2009. [cited 2020 Sep 26]. Available from: https://era.library.ualberta.ca/files/cft848q762.

Council of Science Editors:

Biglands A. Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay. [Masters Thesis]. University of Alberta; 2009. Available from: https://era.library.ualberta.ca/files/cft848q762

4. Scholz, Sebastian Paris. Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper.

Degree: 2002, Universität Dortmund

As notion for robustness, a finite sample breakdown point definition for estimators of convex bodies is presented by using ideas from convex geometry. The estimation… (more)

Subjects/Keywords: affin aquivariante Schätzer; affine equivariant estimators; Convex body; high breakdown point; hoher Bruchpunkt; Konvexe Körper; MZE­criterion; MZE­Kriterium; Polarmenge; polar set; polytope; Polytope; Stützfunktion; support function; zonoid; Zonoid; 310

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scholz, S. P. (2002). Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. (Thesis). Universität Dortmund. Retrieved from http://hdl.handle.net/2003/2787

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Scholz, Sebastian Paris. “Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper.” 2002. Thesis, Universität Dortmund. Accessed September 26, 2020. http://hdl.handle.net/2003/2787.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Scholz, Sebastian Paris. “Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper.” 2002. Web. 26 Sep 2020.

Vancouver:

Scholz SP. Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. [Internet] [Thesis]. Universität Dortmund; 2002. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2003/2787.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Scholz SP. Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. [Thesis]. Universität Dortmund; 2002. Available from: http://hdl.handle.net/2003/2787

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Scholz, Sebastian Paris. Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper.

Degree: 2003, Technische Universität Dortmund

 As notion for robustness, a finite sample breakdown point definition for estimators of convex bodies is presented by using ideas from convex geometry. The estimation… (more)

Subjects/Keywords: Konvexe Körper; Stützfunktion; Polarmenge; affin aquivariante Schätzer; hoher Bruchpunkt; Zonoid; Polytope; MZE­Kriterium; Convex body; support function; polar set; affine equivariant estimators; high breakdown point; zonoid; polytope; MZE­criterion; 310

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scholz, S. P. (2003). Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-14907

Chicago Manual of Style (16th Edition):

Scholz, Sebastian Paris. “Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper.” 2003. Doctoral Dissertation, Technische Universität Dortmund. Accessed September 26, 2020. http://dx.doi.org/10.17877/DE290R-14907.

MLA Handbook (7th Edition):

Scholz, Sebastian Paris. “Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper.” 2003. Web. 26 Sep 2020.

Vancouver:

Scholz SP. Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2003. [cited 2020 Sep 26]. Available from: http://dx.doi.org/10.17877/DE290R-14907.

Council of Science Editors:

Scholz SP. Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. [Doctoral Dissertation]. Technische Universität Dortmund; 2003. Available from: http://dx.doi.org/10.17877/DE290R-14907

6. Quintero Ospina , Rodolfo Alexander. Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria .

Degree: 2013, Universidad de los Andes

 La conjetura de Martin Kneser, y posteriormente, la prueba de la misma por László Lovász, fueron acaso los mayores incentivos para prestar seria atención a… (more)

Subjects/Keywords: Kneser; conjetura; complejo simplicial; Borsuk; Ulam; Lovázs; grafo; índice; producto borrado; join borrado; función equivariante; encajamiento; topología; combinatoria; homología; grupo fundamental; espacio recubridor; levantamiento; hiperplano; politopo; convexo; coloramiento; conjecture; simplicial complex; deleted join; equivariant function; index; graph; embedding; topology; combinatorics; homology; fundamental group; lift; polytope; convex; coloring; hyperplane; covering space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Quintero Ospina , R. A. (2013). Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria . (Thesis). Universidad de los Andes. Retrieved from http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Quintero Ospina , Rodolfo Alexander. “Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria .” 2013. Thesis, Universidad de los Andes. Accessed September 26, 2020. http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Quintero Ospina , Rodolfo Alexander. “Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria .” 2013. Web. 26 Sep 2020.

Vancouver:

Quintero Ospina RA. Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria . [Internet] [Thesis]. Universidad de los Andes; 2013. [cited 2020 Sep 26]. Available from: http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Quintero Ospina RA. Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria . [Thesis]. Universidad de los Andes; 2013. Available from: http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

7. Kadje Kenmogne, Romain. Estimation de paramètres en exploitant les aspects calculatoires et numériques.

Degree: 2018, Université de Montréal

Subjects/Keywords: Convergence de variables aléatoires; Copule; Différence de variables de loi gamma; Estimateur équivariant; Estimation des paramètres; Fonction caractéristique; Méthode bayésienne; Pseudo-vraisemblance; Rapport de variables gaussiennes; Vraisemblance des rangs; Bayesian method; Characteristic function; Convergence of random variables; Copula; Difference of gamma variates; Equivariant estimator; Parameter estimation; Pseudo-likelihood; Rank-likelihood; Ratio of normal variables; Physical Sciences - Statistics / Sciences physiques - Statistiques (UMI : 0463)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kadje Kenmogne, R. (2018). Estimation de paramètres en exploitant les aspects calculatoires et numériques. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/20584

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kadje Kenmogne, Romain. “Estimation de paramètres en exploitant les aspects calculatoires et numériques.” 2018. Thesis, Université de Montréal. Accessed September 26, 2020. http://hdl.handle.net/1866/20584.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kadje Kenmogne, Romain. “Estimation de paramètres en exploitant les aspects calculatoires et numériques.” 2018. Web. 26 Sep 2020.

Vancouver:

Kadje Kenmogne R. Estimation de paramètres en exploitant les aspects calculatoires et numériques. [Internet] [Thesis]. Université de Montréal; 2018. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1866/20584.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kadje Kenmogne R. Estimation de paramètres en exploitant les aspects calculatoires et numériques. [Thesis]. Université de Montréal; 2018. Available from: http://hdl.handle.net/1866/20584

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.