Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( en RANDOM NORMAL MATRICES). Showing records 1 – 30 of 42885 total matches.

[1] [2] [3] [4] [5] … [1430]

Search Limiters

Last 2 Years | English Only

Languages

Country

▼ Search Limiters


Pontifical Catholic University of Rio de Janeiro

1. ROUHOLLAH EBRAHIMI. [en] EXTREME VALUE STATISTICS OF RANDOM NORMAL MATRICES.

Degree: 2019, Pontifical Catholic University of Rio de Janeiro

[pt] Com diversas aplicações em matemática, física e finanças, Teoria das Matrizes Aleatórias (RMT) recentemente atraiu muita atenção. Enquanto o RMT Hermitiano é de especial… (more)

Subjects/Keywords: [pt] UNIVERSALIDADE; [en] UNIVERSALITY; [pt] POLINOMIOS ORTOGONAIS; [en] ORTHOGONAL POLYNOMIALS; [pt] MATRIZES ALEATORIAS NORMAIS; [en] RANDOM NORMAL MATRICES; [pt] ESTATISTICAS DE VALOR EXTREMO; [en] EXTREME VALUE STATISTICS

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

EBRAHIMI, R. (2019). [en] EXTREME VALUE STATISTICS OF RANDOM NORMAL MATRICES. (Thesis). Pontifical Catholic University of Rio de Janeiro. Retrieved from http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36996

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

EBRAHIMI, ROUHOLLAH. “[en] EXTREME VALUE STATISTICS OF RANDOM NORMAL MATRICES.” 2019. Thesis, Pontifical Catholic University of Rio de Janeiro. Accessed September 23, 2020. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36996.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

EBRAHIMI, ROUHOLLAH. “[en] EXTREME VALUE STATISTICS OF RANDOM NORMAL MATRICES.” 2019. Web. 23 Sep 2020.

Vancouver:

EBRAHIMI R. [en] EXTREME VALUE STATISTICS OF RANDOM NORMAL MATRICES. [Internet] [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2019. [cited 2020 Sep 23]. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36996.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

EBRAHIMI R. [en] EXTREME VALUE STATISTICS OF RANDOM NORMAL MATRICES. [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2019. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36996

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Hong Kong University of Science and Technology

2. Choi, Chong-Ha. Group randomness of mutually unbiased bases.

Degree: 2015, Hong Kong University of Science and Technology

 In a series of remarkable papers ([4, 5, 26]), researchers studied the group randomness property of sequences based on binary linear codes. More precisely, they… (more)

Subjects/Keywords: Random matrices ; Random sets

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Choi, C. (2015). Group randomness of mutually unbiased bases. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-80219 ; https://doi.org/10.14711/thesis-b1514921 ; http://repository.ust.hk/ir/bitstream/1783.1-80219/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Choi, Chong-Ha. “Group randomness of mutually unbiased bases.” 2015. Thesis, Hong Kong University of Science and Technology. Accessed September 23, 2020. http://repository.ust.hk/ir/Record/1783.1-80219 ; https://doi.org/10.14711/thesis-b1514921 ; http://repository.ust.hk/ir/bitstream/1783.1-80219/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Choi, Chong-Ha. “Group randomness of mutually unbiased bases.” 2015. Web. 23 Sep 2020.

Vancouver:

Choi C. Group randomness of mutually unbiased bases. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2015. [cited 2020 Sep 23]. Available from: http://repository.ust.hk/ir/Record/1783.1-80219 ; https://doi.org/10.14711/thesis-b1514921 ; http://repository.ust.hk/ir/bitstream/1783.1-80219/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Choi C. Group randomness of mutually unbiased bases. [Thesis]. Hong Kong University of Science and Technology; 2015. Available from: http://repository.ust.hk/ir/Record/1783.1-80219 ; https://doi.org/10.14711/thesis-b1514921 ; http://repository.ust.hk/ir/bitstream/1783.1-80219/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Hong Kong University of Science and Technology

3. Chan, Chin Hei. On the group randomness of Z₄-linear block codes.

Degree: 2016, Hong Kong University of Science and Technology

 In a series of papers and MPhil theses, researchers have studied the group randomness property associated with sequences based on linear codes over finite fields,… (more)

Subjects/Keywords: Random matrices ; Random sets

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, C. H. (2016). On the group randomness of Z₄-linear block codes. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-87108 ; https://doi.org/10.14711/thesis-b1627104 ; http://repository.ust.hk/ir/bitstream/1783.1-87108/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chan, Chin Hei. “On the group randomness of Z₄-linear block codes.” 2016. Thesis, Hong Kong University of Science and Technology. Accessed September 23, 2020. http://repository.ust.hk/ir/Record/1783.1-87108 ; https://doi.org/10.14711/thesis-b1627104 ; http://repository.ust.hk/ir/bitstream/1783.1-87108/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chan, Chin Hei. “On the group randomness of Z₄-linear block codes.” 2016. Web. 23 Sep 2020.

Vancouver:

Chan CH. On the group randomness of Z₄-linear block codes. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2016. [cited 2020 Sep 23]. Available from: http://repository.ust.hk/ir/Record/1783.1-87108 ; https://doi.org/10.14711/thesis-b1627104 ; http://repository.ust.hk/ir/bitstream/1783.1-87108/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chan CH. On the group randomness of Z₄-linear block codes. [Thesis]. Hong Kong University of Science and Technology; 2016. Available from: http://repository.ust.hk/ir/Record/1783.1-87108 ; https://doi.org/10.14711/thesis-b1627104 ; http://repository.ust.hk/ir/bitstream/1783.1-87108/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Sydney

4. Swan, Andrew. Global statistics of banded random matrices and the Poisson/Gaudin – Mehta conjecture .

Degree: 2016, University of Sydney

 The Poisson/Gaudin – Mehta conjecture, a major open problem in random matrix theory, states that in the large N limit, the local eigenvalue statistics of an… (more)

Subjects/Keywords: Random; Matrix; Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Swan, A. (2016). Global statistics of banded random matrices and the Poisson/Gaudin – Mehta conjecture . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/16324

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Swan, Andrew. “Global statistics of banded random matrices and the Poisson/Gaudin – Mehta conjecture .” 2016. Thesis, University of Sydney. Accessed September 23, 2020. http://hdl.handle.net/2123/16324.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Swan, Andrew. “Global statistics of banded random matrices and the Poisson/Gaudin – Mehta conjecture .” 2016. Web. 23 Sep 2020.

Vancouver:

Swan A. Global statistics of banded random matrices and the Poisson/Gaudin – Mehta conjecture . [Internet] [Thesis]. University of Sydney; 2016. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/2123/16324.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Swan A. Global statistics of banded random matrices and the Poisson/Gaudin – Mehta conjecture . [Thesis]. University of Sydney; 2016. Available from: http://hdl.handle.net/2123/16324

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Melbourne

5. Fleming, Benjamin J. Particle system realisations of determinantal processes.

Degree: 2011, University of Melbourne

 Special classes of non-intersecting or interlacing particle systems, inspired by various statistical models, and their description in terms of determinantal correlation functions are the main… (more)

Subjects/Keywords: random matrices; probability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fleming, B. J. (2011). Particle system realisations of determinantal processes. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/36723

Chicago Manual of Style (16th Edition):

Fleming, Benjamin J. “Particle system realisations of determinantal processes.” 2011. Doctoral Dissertation, University of Melbourne. Accessed September 23, 2020. http://hdl.handle.net/11343/36723.

MLA Handbook (7th Edition):

Fleming, Benjamin J. “Particle system realisations of determinantal processes.” 2011. Web. 23 Sep 2020.

Vancouver:

Fleming BJ. Particle system realisations of determinantal processes. [Internet] [Doctoral dissertation]. University of Melbourne; 2011. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/11343/36723.

Council of Science Editors:

Fleming BJ. Particle system realisations of determinantal processes. [Doctoral Dissertation]. University of Melbourne; 2011. Available from: http://hdl.handle.net/11343/36723

6. Bun, Joël. Application de la théorie des matrices aléatoires pour les statistiques en grande dimension : Application of Random Matrix Theory to High Dimensional Statistics.

Degree: Docteur es, Physique, 2016, Université Paris-Saclay (ComUE)

De nos jours, il est de plus en plus fréquent de travailler sur des bases de données de très grandes tailles dans plein de domaines… (more)

Subjects/Keywords: Matrices aléatoires; Statistiques en grande dimension; Estimation; Décomposition Spectrale; Random matrices; High dimensional statistics; Estimation; Spectral decomposition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bun, J. (2016). Application de la théorie des matrices aléatoires pour les statistiques en grande dimension : Application of Random Matrix Theory to High Dimensional Statistics. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2016SACLS245

Chicago Manual of Style (16th Edition):

Bun, Joël. “Application de la théorie des matrices aléatoires pour les statistiques en grande dimension : Application of Random Matrix Theory to High Dimensional Statistics.” 2016. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed September 23, 2020. http://www.theses.fr/2016SACLS245.

MLA Handbook (7th Edition):

Bun, Joël. “Application de la théorie des matrices aléatoires pour les statistiques en grande dimension : Application of Random Matrix Theory to High Dimensional Statistics.” 2016. Web. 23 Sep 2020.

Vancouver:

Bun J. Application de la théorie des matrices aléatoires pour les statistiques en grande dimension : Application of Random Matrix Theory to High Dimensional Statistics. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2016. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2016SACLS245.

Council of Science Editors:

Bun J. Application de la théorie des matrices aléatoires pour les statistiques en grande dimension : Application of Random Matrix Theory to High Dimensional Statistics. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2016. Available from: http://www.theses.fr/2016SACLS245


Indian Institute of Science

7. Nanda Kishore Reddy, S. Eigenvalues of Products of Random Matrices.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 In this thesis, we study the exact eigenvalue distribution of product of independent rectangular complex Gaussian matrices and also that of product of independent truncated… (more)

Subjects/Keywords: Random Matrices; Eigenvalues; Rectangular Matrices; Isotropic Random Matrices; Random Matrix; Haar Unitary Matrices; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nanda Kishore Reddy, S. (2018). Eigenvalues of Products of Random Matrices. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3073

Chicago Manual of Style (16th Edition):

Nanda Kishore Reddy, S. “Eigenvalues of Products of Random Matrices.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed September 23, 2020. http://etd.iisc.ac.in/handle/2005/3073.

MLA Handbook (7th Edition):

Nanda Kishore Reddy, S. “Eigenvalues of Products of Random Matrices.” 2018. Web. 23 Sep 2020.

Vancouver:

Nanda Kishore Reddy S. Eigenvalues of Products of Random Matrices. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Sep 23]. Available from: http://etd.iisc.ac.in/handle/2005/3073.

Council of Science Editors:

Nanda Kishore Reddy S. Eigenvalues of Products of Random Matrices. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3073


Oregon State University

8. Nguyen-Huu, Duong. Network Coding, Random Matrices, and Their Applications to Communication Systems.

Degree: PhD, Electrical and Computer Science, 2016, Oregon State University

 In this work, we study network coding technique, its relation to random matrices, and their applications to communication systems. The dissertation consists of three main… (more)

Subjects/Keywords: network coding; Random matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen-Huu, D. (2016). Network Coding, Random Matrices, and Their Applications to Communication Systems. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/58879

Chicago Manual of Style (16th Edition):

Nguyen-Huu, Duong. “Network Coding, Random Matrices, and Their Applications to Communication Systems.” 2016. Doctoral Dissertation, Oregon State University. Accessed September 23, 2020. http://hdl.handle.net/1957/58879.

MLA Handbook (7th Edition):

Nguyen-Huu, Duong. “Network Coding, Random Matrices, and Their Applications to Communication Systems.” 2016. Web. 23 Sep 2020.

Vancouver:

Nguyen-Huu D. Network Coding, Random Matrices, and Their Applications to Communication Systems. [Internet] [Doctoral dissertation]. Oregon State University; 2016. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/1957/58879.

Council of Science Editors:

Nguyen-Huu D. Network Coding, Random Matrices, and Their Applications to Communication Systems. [Doctoral Dissertation]. Oregon State University; 2016. Available from: http://hdl.handle.net/1957/58879


Queen Mary, University of London

9. Nock, Andre. Characteristic polynomials of random matrices and quantum chaotic scattering.

Degree: PhD, 2017, Queen Mary, University of London

 Scattering is a fundamental phenomenon in physics, e.g. large parts of the knowledge about quantum systems stem from scattering experiments. A scattering process can be… (more)

Subjects/Keywords: Mathematical Sciences; Random Matrices; Scattering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nock, A. (2017). Characteristic polynomials of random matrices and quantum chaotic scattering. (Doctoral Dissertation). Queen Mary, University of London. Retrieved from http://qmro.qmul.ac.uk/xmlui/handle/123456789/24714 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.765896

Chicago Manual of Style (16th Edition):

Nock, Andre. “Characteristic polynomials of random matrices and quantum chaotic scattering.” 2017. Doctoral Dissertation, Queen Mary, University of London. Accessed September 23, 2020. http://qmro.qmul.ac.uk/xmlui/handle/123456789/24714 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.765896.

MLA Handbook (7th Edition):

Nock, Andre. “Characteristic polynomials of random matrices and quantum chaotic scattering.” 2017. Web. 23 Sep 2020.

Vancouver:

Nock A. Characteristic polynomials of random matrices and quantum chaotic scattering. [Internet] [Doctoral dissertation]. Queen Mary, University of London; 2017. [cited 2020 Sep 23]. Available from: http://qmro.qmul.ac.uk/xmlui/handle/123456789/24714 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.765896.

Council of Science Editors:

Nock A. Characteristic polynomials of random matrices and quantum chaotic scattering. [Doctoral Dissertation]. Queen Mary, University of London; 2017. Available from: http://qmro.qmul.ac.uk/xmlui/handle/123456789/24714 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.765896


University of Melbourne

10. MAYS, ANTHONY. A geometrical triumvirate of real random matrices.

Degree: 2011, University of Melbourne

 The eigenvalue correlation functions for random matrix ensembles are fundamental descriptors of the statistical properties of these ensembles. In this work we present a five-step… (more)

Subjects/Keywords: random matrices; mathematical physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

MAYS, A. (2011). A geometrical triumvirate of real random matrices. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/36742

Chicago Manual of Style (16th Edition):

MAYS, ANTHONY. “A geometrical triumvirate of real random matrices.” 2011. Doctoral Dissertation, University of Melbourne. Accessed September 23, 2020. http://hdl.handle.net/11343/36742.

MLA Handbook (7th Edition):

MAYS, ANTHONY. “A geometrical triumvirate of real random matrices.” 2011. Web. 23 Sep 2020.

Vancouver:

MAYS A. A geometrical triumvirate of real random matrices. [Internet] [Doctoral dissertation]. University of Melbourne; 2011. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/11343/36742.

Council of Science Editors:

MAYS A. A geometrical triumvirate of real random matrices. [Doctoral Dissertation]. University of Melbourne; 2011. Available from: http://hdl.handle.net/11343/36742

11. Veneziani, Alexei Magalhães. Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores.

Degree: PhD, Física, 2008, University of São Paulo

Uma matriz `A IND.N´ de ordem N ´e normal se e somente se comuta com sua adjunta. Nesta tese investigamos a estatística dos autovalores (no… (more)

Subjects/Keywords: Asymptotic expansion; Distribuição dos autovalores; Engenvalues distribution; Expansão Assintótica; Matrizes aleatórias normais; Núcleo integral e reprodutor; Random normal matrices; Reproductor and integral Kernel; Universality; Universilidade

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Veneziani, A. M. (2008). Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052008-101058/ ;

Chicago Manual of Style (16th Edition):

Veneziani, Alexei Magalhães. “Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores.” 2008. Doctoral Dissertation, University of São Paulo. Accessed September 23, 2020. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052008-101058/ ;.

MLA Handbook (7th Edition):

Veneziani, Alexei Magalhães. “Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores.” 2008. Web. 23 Sep 2020.

Vancouver:

Veneziani AM. Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores. [Internet] [Doctoral dissertation]. University of São Paulo; 2008. [cited 2020 Sep 23]. Available from: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052008-101058/ ;.

Council of Science Editors:

Veneziani AM. Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores. [Doctoral Dissertation]. University of São Paulo; 2008. Available from: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052008-101058/ ;


Pontifical Catholic University of Rio de Janeiro

12. [No author]. [en] NON-ASYMPTOTIC RANDOM MATRIX THEORY AND THE SMALL BALL METHOD.

Degree: 2020, Pontifical Catholic University of Rio de Janeiro

[pt] Motivado por problemas no campo da recuperação de sinais por programação convexa, o objetivo deste trabalho é fornecer uma análise precisa do método das… (more)

Subjects/Keywords: [pt] MATRIZES ALEATORIAS; [en] RANDOM MATRICES; [pt] VALORES SINGULARES; [en] SINGULAR VALUES; [pt] RECUPERACAO CONVEXA; [en] CONVEX RECOVERY; [pt] METODO DA BOLA PEQUENA; [en] SMALL BALL METHOD

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

author], [. (2020). [en] NON-ASYMPTOTIC RANDOM MATRIX THEORY AND THE SMALL BALL METHOD. (Thesis). Pontifical Catholic University of Rio de Janeiro. Retrieved from http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=48510

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

author], [No. “[en] NON-ASYMPTOTIC RANDOM MATRIX THEORY AND THE SMALL BALL METHOD.” 2020. Thesis, Pontifical Catholic University of Rio de Janeiro. Accessed September 23, 2020. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=48510.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

author], [No. “[en] NON-ASYMPTOTIC RANDOM MATRIX THEORY AND THE SMALL BALL METHOD.” 2020. Web. 23 Sep 2020.

Vancouver:

author] [. [en] NON-ASYMPTOTIC RANDOM MATRIX THEORY AND THE SMALL BALL METHOD. [Internet] [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2020. [cited 2020 Sep 23]. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=48510.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. [en] NON-ASYMPTOTIC RANDOM MATRIX THEORY AND THE SMALL BALL METHOD. [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2020. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=48510

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université Paris-Sud – Paris XI

13. Rambeau, Joachim. Statistiques d'extrêmes d'interfaces en croissance : Extremum statistics of growing interfaces.

Degree: Docteur es, Physique, 2011, Université Paris-Sud – Paris XI

Une interface est une zone de l'espace qui sépare deux régions possédant des propriétés physiques différentes. La plupart des interfaces de la nature résultent d'un… (more)

Subjects/Keywords: Croissance d'interfaces; Statistiques d'extrêmes; Mouvement brownien; Polymère dirigé en milieu aléatoire; Matrices aléatoires; Growing interfaces; Extreme value statistics; Brownian motion; Directed polymer in random medium; Random matrix theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rambeau, J. (2011). Statistiques d'extrêmes d'interfaces en croissance : Extremum statistics of growing interfaces. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2011PA112161

Chicago Manual of Style (16th Edition):

Rambeau, Joachim. “Statistiques d'extrêmes d'interfaces en croissance : Extremum statistics of growing interfaces.” 2011. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed September 23, 2020. http://www.theses.fr/2011PA112161.

MLA Handbook (7th Edition):

Rambeau, Joachim. “Statistiques d'extrêmes d'interfaces en croissance : Extremum statistics of growing interfaces.” 2011. Web. 23 Sep 2020.

Vancouver:

Rambeau J. Statistiques d'extrêmes d'interfaces en croissance : Extremum statistics of growing interfaces. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2011. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2011PA112161.

Council of Science Editors:

Rambeau J. Statistiques d'extrêmes d'interfaces en croissance : Extremum statistics of growing interfaces. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2011. Available from: http://www.theses.fr/2011PA112161


University of Alberta

14. Rivasplata, Omar D. Smallest singular value of sparse random matrices.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2012, University of Alberta

 In this thesis probability estimates on the smallest singular value of random matrices with independent entries are extended to a class of sparse random matrices.… (more)

Subjects/Keywords: incompressible vectors; deviation inequalities; sparse matrices; random matrices; singular values; compressible vectors; invertibility of random matrices; sub-Gaussian random variables

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rivasplata, O. D. (2012). Smallest singular value of sparse random matrices. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/nc580m941

Chicago Manual of Style (16th Edition):

Rivasplata, Omar D. “Smallest singular value of sparse random matrices.” 2012. Doctoral Dissertation, University of Alberta. Accessed September 23, 2020. https://era.library.ualberta.ca/files/nc580m941.

MLA Handbook (7th Edition):

Rivasplata, Omar D. “Smallest singular value of sparse random matrices.” 2012. Web. 23 Sep 2020.

Vancouver:

Rivasplata OD. Smallest singular value of sparse random matrices. [Internet] [Doctoral dissertation]. University of Alberta; 2012. [cited 2020 Sep 23]. Available from: https://era.library.ualberta.ca/files/nc580m941.

Council of Science Editors:

Rivasplata OD. Smallest singular value of sparse random matrices. [Doctoral Dissertation]. University of Alberta; 2012. Available from: https://era.library.ualberta.ca/files/nc580m941


Université Catholique de Louvain

15. Vanderstichelen, Didier. Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models.

Degree: 2011, Université Catholique de Louvain

Random matrix theory studies the distribution of the spectrum of matrices chosen randomly in various matrix ensembles. The link between random matrix theory and integrable… (more)

Subjects/Keywords: Virasoro algebra; Integrable systems; Random matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vanderstichelen, D. (2011). Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/93562

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vanderstichelen, Didier. “Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models.” 2011. Thesis, Université Catholique de Louvain. Accessed September 23, 2020. http://hdl.handle.net/2078.1/93562.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vanderstichelen, Didier. “Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models.” 2011. Web. 23 Sep 2020.

Vancouver:

Vanderstichelen D. Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models. [Internet] [Thesis]. Université Catholique de Louvain; 2011. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/2078.1/93562.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vanderstichelen D. Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models. [Thesis]. Université Catholique de Louvain; 2011. Available from: http://hdl.handle.net/2078.1/93562

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

16. Wang, Fan. Ergodic and algebraic properties of transfer operators for products of random matrices.

Degree: PhD, 2018, University of Oxford

 A recent paper by Pollicott in 2010 presented an efficient algorithm for computing the Lyapunov exponent of i.i.d. random products of positive matrices. The aim… (more)

Subjects/Keywords: Random matrices; Limit theorems (Probability theory)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, F. (2018). Ergodic and algebraic properties of transfer operators for products of random matrices. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:1e9d78b8-80ae-4ce8-8f01-d80c93c129ca ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.770656

Chicago Manual of Style (16th Edition):

Wang, Fan. “Ergodic and algebraic properties of transfer operators for products of random matrices.” 2018. Doctoral Dissertation, University of Oxford. Accessed September 23, 2020. http://ora.ox.ac.uk/objects/uuid:1e9d78b8-80ae-4ce8-8f01-d80c93c129ca ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.770656.

MLA Handbook (7th Edition):

Wang, Fan. “Ergodic and algebraic properties of transfer operators for products of random matrices.” 2018. Web. 23 Sep 2020.

Vancouver:

Wang F. Ergodic and algebraic properties of transfer operators for products of random matrices. [Internet] [Doctoral dissertation]. University of Oxford; 2018. [cited 2020 Sep 23]. Available from: http://ora.ox.ac.uk/objects/uuid:1e9d78b8-80ae-4ce8-8f01-d80c93c129ca ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.770656.

Council of Science Editors:

Wang F. Ergodic and algebraic properties of transfer operators for products of random matrices. [Doctoral Dissertation]. University of Oxford; 2018. Available from: http://ora.ox.ac.uk/objects/uuid:1e9d78b8-80ae-4ce8-8f01-d80c93c129ca ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.770656


Hong Kong University of Science and Technology

17. Zhou, Wenxin. Cramér type moderate deviation theorems for studentized non-linear statistics with applications to high-dimensional statistical inference.

Degree: 2013, Hong Kong University of Science and Technology

 The main contribution of this dissertation is two-fold. First, we establish general Cramér type moderate deviation theorems for a class of Studentized non-linear statistics, including… (more)

Subjects/Keywords: Deviation (Mathematics) ; Linear models (Statistics) ; Random matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhou, W. (2013). Cramér type moderate deviation theorems for studentized non-linear statistics with applications to high-dimensional statistical inference. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-69483 ; https://doi.org/10.14711/thesis-b1240190 ; http://repository.ust.hk/ir/bitstream/1783.1-69483/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhou, Wenxin. “Cramér type moderate deviation theorems for studentized non-linear statistics with applications to high-dimensional statistical inference.” 2013. Thesis, Hong Kong University of Science and Technology. Accessed September 23, 2020. http://repository.ust.hk/ir/Record/1783.1-69483 ; https://doi.org/10.14711/thesis-b1240190 ; http://repository.ust.hk/ir/bitstream/1783.1-69483/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhou, Wenxin. “Cramér type moderate deviation theorems for studentized non-linear statistics with applications to high-dimensional statistical inference.” 2013. Web. 23 Sep 2020.

Vancouver:

Zhou W. Cramér type moderate deviation theorems for studentized non-linear statistics with applications to high-dimensional statistical inference. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2013. [cited 2020 Sep 23]. Available from: http://repository.ust.hk/ir/Record/1783.1-69483 ; https://doi.org/10.14711/thesis-b1240190 ; http://repository.ust.hk/ir/bitstream/1783.1-69483/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhou W. Cramér type moderate deviation theorems for studentized non-linear statistics with applications to high-dimensional statistical inference. [Thesis]. Hong Kong University of Science and Technology; 2013. Available from: http://repository.ust.hk/ir/Record/1783.1-69483 ; https://doi.org/10.14711/thesis-b1240190 ; http://repository.ust.hk/ir/bitstream/1783.1-69483/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Queens University

18. Novak, Jonathan. Topics in Combinatorics and Random Matrix Theory .

Degree: Mathematics and Statistics, 2009, Queens University

 Motivated by the longest increasing subsequence problem, we examine sundry topics at the interface of enumerative/algebraic combinatorics and random matrix theory. We begin with an… (more)

Subjects/Keywords: Combinatorics ; Random Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Novak, J. (2009). Topics in Combinatorics and Random Matrix Theory . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/5235

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Novak, Jonathan. “Topics in Combinatorics and Random Matrix Theory .” 2009. Thesis, Queens University. Accessed September 23, 2020. http://hdl.handle.net/1974/5235.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Novak, Jonathan. “Topics in Combinatorics and Random Matrix Theory .” 2009. Web. 23 Sep 2020.

Vancouver:

Novak J. Topics in Combinatorics and Random Matrix Theory . [Internet] [Thesis]. Queens University; 2009. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/1974/5235.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Novak J. Topics in Combinatorics and Random Matrix Theory . [Thesis]. Queens University; 2009. Available from: http://hdl.handle.net/1974/5235

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Beltiukov, Iaroslav. Matrices aléatoires et propriétés vibrationnelles de solides amorphes dans le domaine terahertz : Random matrices and vibrational properties of amorphous solids at THz frequencies.

Degree: Docteur es, Physique, 2016, Montpellier

Il est bien connu que divers solides amorphes ont de nombreuses propriétés universelles. L'une d'entre elles est la variation de la conductivité thermique en fonction… (more)

Subjects/Keywords: Matrices aléatoires; Vibrations; Solides amorphes; Random matrices; Vibrations; Amorphous solids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beltiukov, I. (2016). Matrices aléatoires et propriétés vibrationnelles de solides amorphes dans le domaine terahertz : Random matrices and vibrational properties of amorphous solids at THz frequencies. (Doctoral Dissertation). Montpellier. Retrieved from http://www.theses.fr/2016MONTS018

Chicago Manual of Style (16th Edition):

Beltiukov, Iaroslav. “Matrices aléatoires et propriétés vibrationnelles de solides amorphes dans le domaine terahertz : Random matrices and vibrational properties of amorphous solids at THz frequencies.” 2016. Doctoral Dissertation, Montpellier. Accessed September 23, 2020. http://www.theses.fr/2016MONTS018.

MLA Handbook (7th Edition):

Beltiukov, Iaroslav. “Matrices aléatoires et propriétés vibrationnelles de solides amorphes dans le domaine terahertz : Random matrices and vibrational properties of amorphous solids at THz frequencies.” 2016. Web. 23 Sep 2020.

Vancouver:

Beltiukov I. Matrices aléatoires et propriétés vibrationnelles de solides amorphes dans le domaine terahertz : Random matrices and vibrational properties of amorphous solids at THz frequencies. [Internet] [Doctoral dissertation]. Montpellier; 2016. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2016MONTS018.

Council of Science Editors:

Beltiukov I. Matrices aléatoires et propriétés vibrationnelles de solides amorphes dans le domaine terahertz : Random matrices and vibrational properties of amorphous solids at THz frequencies. [Doctoral Dissertation]. Montpellier; 2016. Available from: http://www.theses.fr/2016MONTS018

20. Coste, Simon. Grandes valeurs propres de graphes aléatoires dilués : High eigenvalues of sparse random graphs.

Degree: Docteur es, Mathématiques et Applications, 2019, Université Toulouse III – Paul Sabatier

Une matrice aléatoire n x n est diluée lorsque le nombre d'entrées non nulles est d'ordre n ; les matrices d'adjacence de graphes d-réguliers ou… (more)

Subjects/Keywords: Graphes aléatoires; Matrices aléatoires; Valeurs propres; Reconstruction de matrices; Random graphs; Random matrices; Eigenvalues; Matrix reconstruction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Coste, S. (2019). Grandes valeurs propres de graphes aléatoires dilués : High eigenvalues of sparse random graphs. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2019TOU30122

Chicago Manual of Style (16th Edition):

Coste, Simon. “Grandes valeurs propres de graphes aléatoires dilués : High eigenvalues of sparse random graphs.” 2019. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed September 23, 2020. http://www.theses.fr/2019TOU30122.

MLA Handbook (7th Edition):

Coste, Simon. “Grandes valeurs propres de graphes aléatoires dilués : High eigenvalues of sparse random graphs.” 2019. Web. 23 Sep 2020.

Vancouver:

Coste S. Grandes valeurs propres de graphes aléatoires dilués : High eigenvalues of sparse random graphs. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2019. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2019TOU30122.

Council of Science Editors:

Coste S. Grandes valeurs propres de graphes aléatoires dilués : High eigenvalues of sparse random graphs. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2019. Available from: http://www.theses.fr/2019TOU30122


Harvard University

21. Huang, Jiaoyang. Spectral Statistics of Random d-Regular Graphs.

Degree: PhD, 2019, Harvard University

In this thesis we study the uniform random d-regular graphs on N vertices from a random matrix theory point of view. In the first part… (more)

Subjects/Keywords: sparse random graphs; random matrices; eigenvalue statistics; eigenvector statistics.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, J. (2019). Spectral Statistics of Random d-Regular Graphs. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029716

Chicago Manual of Style (16th Edition):

Huang, Jiaoyang. “Spectral Statistics of Random d-Regular Graphs.” 2019. Doctoral Dissertation, Harvard University. Accessed September 23, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029716.

MLA Handbook (7th Edition):

Huang, Jiaoyang. “Spectral Statistics of Random d-Regular Graphs.” 2019. Web. 23 Sep 2020.

Vancouver:

Huang J. Spectral Statistics of Random d-Regular Graphs. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2020 Sep 23]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029716.

Council of Science Editors:

Huang J. Spectral Statistics of Random d-Regular Graphs. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029716

22. Stewart, Kathryn Lockwood. On Truncations of Haar Distributed Random Matrices.

Degree: PhD, Mathematics, 2019, Case Western Reserve University School of Graduate Studies

 The main focus of this dissertation is the study of truncations, that is principal submatrices, of an n by n Haar-distributed random matrix. In Chapter… (more)

Subjects/Keywords: Mathematics; random matrices, random orthogonal matrix, random unitary matrix, central limit theorem, Wishart matrices, moments, submatrices, empirical spectral measure, Coulomb gases

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stewart, K. L. (2019). On Truncations of Haar Distributed Random Matrices. (Doctoral Dissertation). Case Western Reserve University School of Graduate Studies. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=case1554279921382029

Chicago Manual of Style (16th Edition):

Stewart, Kathryn Lockwood. “On Truncations of Haar Distributed Random Matrices.” 2019. Doctoral Dissertation, Case Western Reserve University School of Graduate Studies. Accessed September 23, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1554279921382029.

MLA Handbook (7th Edition):

Stewart, Kathryn Lockwood. “On Truncations of Haar Distributed Random Matrices.” 2019. Web. 23 Sep 2020.

Vancouver:

Stewart KL. On Truncations of Haar Distributed Random Matrices. [Internet] [Doctoral dissertation]. Case Western Reserve University School of Graduate Studies; 2019. [cited 2020 Sep 23]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=case1554279921382029.

Council of Science Editors:

Stewart KL. On Truncations of Haar Distributed Random Matrices. [Doctoral Dissertation]. Case Western Reserve University School of Graduate Studies; 2019. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=case1554279921382029

23. Husson, Jonathan. Grandes déviations et convergence du spectre de matrices aléatoires : Large Deviations and Convergence of the Spectrum of Random Matrices.

Degree: Docteur es, Mathématiques, 2019, Lyon

L'un des principaux objets d'étude de la théorie des matrices aléatoires est le spectre de matrices dont les coefficients sont des variables aléatoires et dont… (more)

Subjects/Keywords: Matrices aléatoires; Plus grande valeur propre; Polynôme de matrices aléatoires; Grandes déviations; Mesure de Brown; Random matrices; Largest eigenvalue; Polynomial in random matrices; Large deviations; Brown measure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Husson, J. (2019). Grandes déviations et convergence du spectre de matrices aléatoires : Large Deviations and Convergence of the Spectrum of Random Matrices. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2019LYSEN067

Chicago Manual of Style (16th Edition):

Husson, Jonathan. “Grandes déviations et convergence du spectre de matrices aléatoires : Large Deviations and Convergence of the Spectrum of Random Matrices.” 2019. Doctoral Dissertation, Lyon. Accessed September 23, 2020. http://www.theses.fr/2019LYSEN067.

MLA Handbook (7th Edition):

Husson, Jonathan. “Grandes déviations et convergence du spectre de matrices aléatoires : Large Deviations and Convergence of the Spectrum of Random Matrices.” 2019. Web. 23 Sep 2020.

Vancouver:

Husson J. Grandes déviations et convergence du spectre de matrices aléatoires : Large Deviations and Convergence of the Spectrum of Random Matrices. [Internet] [Doctoral dissertation]. Lyon; 2019. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2019LYSEN067.

Council of Science Editors:

Husson J. Grandes déviations et convergence du spectre de matrices aléatoires : Large Deviations and Convergence of the Spectrum of Random Matrices. [Doctoral Dissertation]. Lyon; 2019. Available from: http://www.theses.fr/2019LYSEN067

24. Augeri, Fanny. Principes de grandes déviations pour des modèles de matrices aléatoires : Large deviations problems for random matrices.

Degree: Docteur es, Mathématiques appliquées, 2017, Université Toulouse III – Paul Sabatier

Cette thèse s'inscrit dans le domaine des matrices aléatoires et des techniques de grandes déviations. On s'attachera dans un premier temps à donner des inégalités… (more)

Subjects/Keywords: Grandes déviations; Matrices aléatoires; Inégalités de concentration; Large deviations; Random matrices; Concentration inequalities

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Augeri, F. (2017). Principes de grandes déviations pour des modèles de matrices aléatoires : Large deviations problems for random matrices. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2017TOU30075

Chicago Manual of Style (16th Edition):

Augeri, Fanny. “Principes de grandes déviations pour des modèles de matrices aléatoires : Large deviations problems for random matrices.” 2017. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed September 23, 2020. http://www.theses.fr/2017TOU30075.

MLA Handbook (7th Edition):

Augeri, Fanny. “Principes de grandes déviations pour des modèles de matrices aléatoires : Large deviations problems for random matrices.” 2017. Web. 23 Sep 2020.

Vancouver:

Augeri F. Principes de grandes déviations pour des modèles de matrices aléatoires : Large deviations problems for random matrices. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2017. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2017TOU30075.

Council of Science Editors:

Augeri F. Principes de grandes déviations pour des modèles de matrices aléatoires : Large deviations problems for random matrices. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2017. Available from: http://www.theses.fr/2017TOU30075

25. Marino, Ricardo. Number statistics in random matrices and applications to quantum systems : Statistique de comptage de valeurs propres de matrices aléatoires et applications en mécanique quantique.

Degree: Docteur es, Physique, 2015, Université Paris-Saclay (ComUE)

L'objectif principal de cette thèse est de répondre à la question: étant donné une matrice aléatoire avec spectre réel, combien de valeurs propres tomber entre… (more)

Subjects/Keywords: Matrices aléatoires; Atomes froids; Statistique de comptage; Random matrices; Cold fermions; Number statistics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marino, R. (2015). Number statistics in random matrices and applications to quantum systems : Statistique de comptage de valeurs propres de matrices aléatoires et applications en mécanique quantique. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2015SACLS045

Chicago Manual of Style (16th Edition):

Marino, Ricardo. “Number statistics in random matrices and applications to quantum systems : Statistique de comptage de valeurs propres de matrices aléatoires et applications en mécanique quantique.” 2015. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed September 23, 2020. http://www.theses.fr/2015SACLS045.

MLA Handbook (7th Edition):

Marino, Ricardo. “Number statistics in random matrices and applications to quantum systems : Statistique de comptage de valeurs propres de matrices aléatoires et applications en mécanique quantique.” 2015. Web. 23 Sep 2020.

Vancouver:

Marino R. Number statistics in random matrices and applications to quantum systems : Statistique de comptage de valeurs propres de matrices aléatoires et applications en mécanique quantique. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2015. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2015SACLS045.

Council of Science Editors:

Marino R. Number statistics in random matrices and applications to quantum systems : Statistique de comptage de valeurs propres de matrices aléatoires et applications en mécanique quantique. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2015. Available from: http://www.theses.fr/2015SACLS045

26. Bahier, Valentin. Spectre de matrices de permutation aléatoires : Spectrum of random permutation matrices.

Degree: Docteur es, Mathématiques appliquées, 2018, Université Toulouse III – Paul Sabatier

Dans cette thèse, nous nous intéressons à des matrices aléatoires en lien avec des permutations. Nous abordons l'étude de leurs spectres de plusieurs manières, et… (more)

Subjects/Keywords: Matrices aléatoires; Permutations aléatoires; Valeurs propres; Processus ponctuels; Fluctuations asymptotiques; Random matrices; Random permutations; Point processes; Asymptotic fluctuations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bahier, V. (2018). Spectre de matrices de permutation aléatoires : Spectrum of random permutation matrices. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2018TOU30069

Chicago Manual of Style (16th Edition):

Bahier, Valentin. “Spectre de matrices de permutation aléatoires : Spectrum of random permutation matrices.” 2018. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed September 23, 2020. http://www.theses.fr/2018TOU30069.

MLA Handbook (7th Edition):

Bahier, Valentin. “Spectre de matrices de permutation aléatoires : Spectrum of random permutation matrices.” 2018. Web. 23 Sep 2020.

Vancouver:

Bahier V. Spectre de matrices de permutation aléatoires : Spectrum of random permutation matrices. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2018. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2018TOU30069.

Council of Science Editors:

Bahier V. Spectre de matrices de permutation aléatoires : Spectrum of random permutation matrices. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2018. Available from: http://www.theses.fr/2018TOU30069


IUPUI

27. Liechty, Karl Edmund. Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice.

Degree: 2011, IUPUI

Indiana University-Purdue University Indianapolis (IUPUI)

In this dissertation the partition function, Zn, for the six-vertex model with domain wall boundary conditions is solved in the… (more)

Subjects/Keywords: Statistical Mechanics, Random Matrices, Orthogonal Polynomials, Asymptotics, Riemann-Hilbert Problems; Statistical mechanics; Random matrices; Orthogonal polynomials; Riemann-Hilbert problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liechty, K. E. (2011). Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/2482

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Liechty, Karl Edmund. “Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice.” 2011. Thesis, IUPUI. Accessed September 23, 2020. http://hdl.handle.net/1805/2482.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Liechty, Karl Edmund. “Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice.” 2011. Web. 23 Sep 2020.

Vancouver:

Liechty KE. Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice. [Internet] [Thesis]. IUPUI; 2011. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/1805/2482.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Liechty KE. Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice. [Thesis]. IUPUI; 2011. Available from: http://hdl.handle.net/1805/2482

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

28. Butez, Raphaël. Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires : Random Polynomials, Coulomb Gas and Random Matrices.

Degree: Docteur es, Sciences, 2017, Paris Sciences et Lettres

L'objet principal de cette thèse est l'étude de plusieurs modèles de polynômes aléatoires. Il s'agit de comprendre le comportement macroscopique des racines de polynômes aléatoires… (more)

Subjects/Keywords: Polynômes aléatoires; Gaz de Coulomb; Grandes déviations; Matrices aléatoires; Random polynomials; Coulomb gas; Large deviations; Random matrices; 519.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Butez, R. (2017). Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires : Random Polynomials, Coulomb Gas and Random Matrices. (Doctoral Dissertation). Paris Sciences et Lettres. Retrieved from http://www.theses.fr/2017PSLED055

Chicago Manual of Style (16th Edition):

Butez, Raphaël. “Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires : Random Polynomials, Coulomb Gas and Random Matrices.” 2017. Doctoral Dissertation, Paris Sciences et Lettres. Accessed September 23, 2020. http://www.theses.fr/2017PSLED055.

MLA Handbook (7th Edition):

Butez, Raphaël. “Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires : Random Polynomials, Coulomb Gas and Random Matrices.” 2017. Web. 23 Sep 2020.

Vancouver:

Butez R. Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires : Random Polynomials, Coulomb Gas and Random Matrices. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres; 2017. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2017PSLED055.

Council of Science Editors:

Butez R. Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires : Random Polynomials, Coulomb Gas and Random Matrices. [Doctoral Dissertation]. Paris Sciences et Lettres; 2017. Available from: http://www.theses.fr/2017PSLED055

29. Lacroix-A-Chez-Toine, Bertrand. Extreme value statistics of strongly correlated systems : fermions, random matrices and random walks : Statistique d'extrême de systèmes fortement corrélés : fermions, matrices aléatoires et marches aléatoires.

Degree: Docteur es, Physique, 2019, Université Paris-Saclay (ComUE)

La prévision d'événements extrêmes est une question cruciale dans des domaines divers allant de la météorologie à la finance. Trois classes d'universalité (Gumbel, Fréchet et… (more)

Subjects/Keywords: Statistiques d'extrême; Fermions piégés; Matrices aléatoires; Marches aléatoires; Extreme value statistics; Trapped fermions; Random matrices; Random walks

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lacroix-A-Chez-Toine, B. (2019). Extreme value statistics of strongly correlated systems : fermions, random matrices and random walks : Statistique d'extrême de systèmes fortement corrélés : fermions, matrices aléatoires et marches aléatoires. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2019SACLS122

Chicago Manual of Style (16th Edition):

Lacroix-A-Chez-Toine, Bertrand. “Extreme value statistics of strongly correlated systems : fermions, random matrices and random walks : Statistique d'extrême de systèmes fortement corrélés : fermions, matrices aléatoires et marches aléatoires.” 2019. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed September 23, 2020. http://www.theses.fr/2019SACLS122.

MLA Handbook (7th Edition):

Lacroix-A-Chez-Toine, Bertrand. “Extreme value statistics of strongly correlated systems : fermions, random matrices and random walks : Statistique d'extrême de systèmes fortement corrélés : fermions, matrices aléatoires et marches aléatoires.” 2019. Web. 23 Sep 2020.

Vancouver:

Lacroix-A-Chez-Toine B. Extreme value statistics of strongly correlated systems : fermions, random matrices and random walks : Statistique d'extrême de systèmes fortement corrélés : fermions, matrices aléatoires et marches aléatoires. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2019. [cited 2020 Sep 23]. Available from: http://www.theses.fr/2019SACLS122.

Council of Science Editors:

Lacroix-A-Chez-Toine B. Extreme value statistics of strongly correlated systems : fermions, random matrices and random walks : Statistique d'extrême de systèmes fortement corrélés : fermions, matrices aléatoires et marches aléatoires. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2019. Available from: http://www.theses.fr/2019SACLS122

30. Jönsson, Simon. Limiting Spectral Distribution and Capacity of MIMO Systems.

Degree: Faculty of Science & Engineering, 2017, Linköping UniversityLinköping University

  In this thesis we will brush through fundamental multivariate statistical theory and then present MIMO-systems briefly in order to later calculate the channel capacity… (more)

Subjects/Keywords: Random Matrices; Statistical Theory; MIMO systems; Wigner Matrices; Wishart Matrices; Spectral Distribution; Channel Capacity; Mathematics; Matematik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jönsson, S. (2017). Limiting Spectral Distribution and Capacity of MIMO Systems. (Thesis). Linköping UniversityLinköping University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137910

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jönsson, Simon. “Limiting Spectral Distribution and Capacity of MIMO Systems.” 2017. Thesis, Linköping UniversityLinköping University. Accessed September 23, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137910.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jönsson, Simon. “Limiting Spectral Distribution and Capacity of MIMO Systems.” 2017. Web. 23 Sep 2020.

Vancouver:

Jönsson S. Limiting Spectral Distribution and Capacity of MIMO Systems. [Internet] [Thesis]. Linköping UniversityLinköping University; 2017. [cited 2020 Sep 23]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137910.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jönsson S. Limiting Spectral Distribution and Capacity of MIMO Systems. [Thesis]. Linköping UniversityLinköping University; 2017. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137910

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5] … [1430]

.