Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( eigenvalue problem). Showing records 1 – 30 of 79 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

Levels

▼ Search Limiters


NSYSU

1. Chang, Hen-wen. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.

Degree: Master, Applied Mathematics, 2013, NSYSU

 The homotopy continuation method is considered to solve polynomial systems. If the number of solutions of the starting system is much more than that of… (more)

Subjects/Keywords: end game problem; eigenvalue problems; homotopy continuation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chang, H. (2013). The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chang, Hen-wen. “The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.” 2013. Thesis, NSYSU. Accessed April 14, 2021. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chang, Hen-wen. “The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.” 2013. Web. 14 Apr 2021.

Vancouver:

Chang H. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. [Internet] [Thesis]. NSYSU; 2013. [cited 2021 Apr 14]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chang H. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. [Thesis]. NSYSU; 2013. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Wright State University

2. Ali, Ali Hasan. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.

Degree: MS, Mathematics, 2017, Wright State University

 In this thesis, we are investigating the solutions λ of a typical quadratic eigenvalue problem (QEP). Indeed, solutions λ of a QEP of the form… (more)

Subjects/Keywords: Mathematics; Applied Mathematics; Quadratic Eigenvalue problem; Matrix Polynomial Problem; Nonlinear Eigenvalue Problem; Newton Iteration; Generalized Eigenvalue Problem; Newton Maehly Method; Newton Maehly Iteration; Newton Correction; QEP; NLEP; NLEVP; MPP; GEP

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ali, A. H. (2017). Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. (Masters Thesis). Wright State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239

Chicago Manual of Style (16th Edition):

Ali, Ali Hasan. “Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.” 2017. Masters Thesis, Wright State University. Accessed April 14, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239.

MLA Handbook (7th Edition):

Ali, Ali Hasan. “Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.” 2017. Web. 14 Apr 2021.

Vancouver:

Ali AH. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. [Internet] [Masters thesis]. Wright State University; 2017. [cited 2021 Apr 14]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239.

Council of Science Editors:

Ali AH. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. [Masters Thesis]. Wright State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239

3. Bohrer, Matheus. Autovalores em variedades Riemannianas completas.

Degree: 2017, Brazil

O objetivo desta dissertação é estudar o problema de autovalor de Dirichlet para variedades riemannianas completas. Mais precisamente, pretendemos estudar uma cota por baixo para… (more)

Subjects/Keywords: Variedades riemannianas; Autovalores; Dirichlet problem; Yang-type inequality; Eigenvalue problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bohrer, M. (2017). Autovalores em variedades Riemannianas completas. (Masters Thesis). Brazil. Retrieved from http://hdl.handle.net/10183/171054

Chicago Manual of Style (16th Edition):

Bohrer, Matheus. “Autovalores em variedades Riemannianas completas.” 2017. Masters Thesis, Brazil. Accessed April 14, 2021. http://hdl.handle.net/10183/171054.

MLA Handbook (7th Edition):

Bohrer, Matheus. “Autovalores em variedades Riemannianas completas.” 2017. Web. 14 Apr 2021.

Vancouver:

Bohrer M. Autovalores em variedades Riemannianas completas. [Internet] [Masters thesis]. Brazil; 2017. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/10183/171054.

Council of Science Editors:

Bohrer M. Autovalores em variedades Riemannianas completas. [Masters Thesis]. Brazil; 2017. Available from: http://hdl.handle.net/10183/171054


Universitat Politècnica de València

4. Carreño Sánchez, Amanda María. Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation .

Degree: 2020, Universitat Politècnica de València

 [ES] Uno de los objetivos más importantes en el análisis de la seguridad en el campo de la ingeniería nuclear es el cálculo, rápido y… (more)

Subjects/Keywords: Eigenvalue problem solvers; Neutron transport equation; Finite element method; Nuclear engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Carreño Sánchez, A. M. (2020). Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/144771

Chicago Manual of Style (16th Edition):

Carreño Sánchez, Amanda María. “Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation .” 2020. Doctoral Dissertation, Universitat Politècnica de València. Accessed April 14, 2021. http://hdl.handle.net/10251/144771.

MLA Handbook (7th Edition):

Carreño Sánchez, Amanda María. “Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation .” 2020. Web. 14 Apr 2021.

Vancouver:

Carreño Sánchez AM. Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2020. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/10251/144771.

Council of Science Editors:

Carreño Sánchez AM. Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation . [Doctoral Dissertation]. Universitat Politècnica de València; 2020. Available from: http://hdl.handle.net/10251/144771


University of Minnesota

5. Kalantzis, Vasileios. Domain decomposition algorithms for the solution of sparse symmetric generalized eigenvalue problems.

Degree: PhD, Computer Science, 2018, University of Minnesota

 This dissertation focuses on the design, implementation, and evaluation of domain decomposition techniques for the solution of large and sparse algebraic symmetric generalized eigenvalue problems.… (more)

Subjects/Keywords: Domain decomposition; Eigenvalues; Schur complement; Sparse matrices; Symmetric generalized eigenvalue problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kalantzis, V. (2018). Domain decomposition algorithms for the solution of sparse symmetric generalized eigenvalue problems. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/201170

Chicago Manual of Style (16th Edition):

Kalantzis, Vasileios. “Domain decomposition algorithms for the solution of sparse symmetric generalized eigenvalue problems.” 2018. Doctoral Dissertation, University of Minnesota. Accessed April 14, 2021. http://hdl.handle.net/11299/201170.

MLA Handbook (7th Edition):

Kalantzis, Vasileios. “Domain decomposition algorithms for the solution of sparse symmetric generalized eigenvalue problems.” 2018. Web. 14 Apr 2021.

Vancouver:

Kalantzis V. Domain decomposition algorithms for the solution of sparse symmetric generalized eigenvalue problems. [Internet] [Doctoral dissertation]. University of Minnesota; 2018. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/11299/201170.

Council of Science Editors:

Kalantzis V. Domain decomposition algorithms for the solution of sparse symmetric generalized eigenvalue problems. [Doctoral Dissertation]. University of Minnesota; 2018. Available from: http://hdl.handle.net/11299/201170


Louisiana State University

6. Ramachandran, Prashanth. Stability problems in constrained pendulum systems and time-delayed systems.

Degree: PhD, Mechanical Engineering, 2012, Louisiana State University

 In this dissertation, we study the boundary of stability of a class of linear mechanical systems as a function of a parameter. We consider two… (more)

Subjects/Keywords: Stability; Double Pendulum; Time-Delay; Transcendental Eigenvalue Problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ramachandran, P. (2012). Stability problems in constrained pendulum systems and time-delayed systems. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07132012-041706 ; https://digitalcommons.lsu.edu/gradschool_dissertations/581

Chicago Manual of Style (16th Edition):

Ramachandran, Prashanth. “Stability problems in constrained pendulum systems and time-delayed systems.” 2012. Doctoral Dissertation, Louisiana State University. Accessed April 14, 2021. etd-07132012-041706 ; https://digitalcommons.lsu.edu/gradschool_dissertations/581.

MLA Handbook (7th Edition):

Ramachandran, Prashanth. “Stability problems in constrained pendulum systems and time-delayed systems.” 2012. Web. 14 Apr 2021.

Vancouver:

Ramachandran P. Stability problems in constrained pendulum systems and time-delayed systems. [Internet] [Doctoral dissertation]. Louisiana State University; 2012. [cited 2021 Apr 14]. Available from: etd-07132012-041706 ; https://digitalcommons.lsu.edu/gradschool_dissertations/581.

Council of Science Editors:

Ramachandran P. Stability problems in constrained pendulum systems and time-delayed systems. [Doctoral Dissertation]. Louisiana State University; 2012. Available from: etd-07132012-041706 ; https://digitalcommons.lsu.edu/gradschool_dissertations/581


University of Manchester

7. Zemaityte, Mante. Theory and Algorithms for Linear Eigenvalue Problems.

Degree: 2020, University of Manchester

 In the first part of this thesis, methods for the partial solution of generalized eigenvalue problems arising from structural dynamics are studied. A natural choice… (more)

Subjects/Keywords: shift-and-invert Lanczos algorithm; symmetric generalized eigenvalue problem; shifting strategy; structural analysis; orthogonal polynomials; max-plus eigenvalue problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zemaityte, M. (2020). Theory and Algorithms for Linear Eigenvalue Problems. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865

Chicago Manual of Style (16th Edition):

Zemaityte, Mante. “Theory and Algorithms for Linear Eigenvalue Problems.” 2020. Doctoral Dissertation, University of Manchester. Accessed April 14, 2021. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865.

MLA Handbook (7th Edition):

Zemaityte, Mante. “Theory and Algorithms for Linear Eigenvalue Problems.” 2020. Web. 14 Apr 2021.

Vancouver:

Zemaityte M. Theory and Algorithms for Linear Eigenvalue Problems. [Internet] [Doctoral dissertation]. University of Manchester; 2020. [cited 2021 Apr 14]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865.

Council of Science Editors:

Zemaityte M. Theory and Algorithms for Linear Eigenvalue Problems. [Doctoral Dissertation]. University of Manchester; 2020. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865


University of Manchester

8. Zemaityte, Mante. Theory and algorithms for linear eigenvalue problems.

Degree: PhD, 2020, University of Manchester

 In the first part of this thesis, methods for the partial solution of generalized eigenvalue problems arising from structural dynamics are studied. A natural choice… (more)

Subjects/Keywords: max-plus eigenvalue problems; orthogonal polynomials; structural analysis; symmetric generalized eigenvalue problem; shift-and-invert Lanczos algorithm; shifting strategy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zemaityte, M. (2020). Theory and algorithms for linear eigenvalue problems. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528

Chicago Manual of Style (16th Edition):

Zemaityte, Mante. “Theory and algorithms for linear eigenvalue problems.” 2020. Doctoral Dissertation, University of Manchester. Accessed April 14, 2021. https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528.

MLA Handbook (7th Edition):

Zemaityte, Mante. “Theory and algorithms for linear eigenvalue problems.” 2020. Web. 14 Apr 2021.

Vancouver:

Zemaityte M. Theory and algorithms for linear eigenvalue problems. [Internet] [Doctoral dissertation]. University of Manchester; 2020. [cited 2021 Apr 14]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528.

Council of Science Editors:

Zemaityte M. Theory and algorithms for linear eigenvalue problems. [Doctoral Dissertation]. University of Manchester; 2020. Available from: https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528

9. Pallikarakis, Nikolaos. Το αντίστροφο φασματικό πρόβλημα της εύρεσης του δείκτη διάθλασης για το εσωτερικό πρόβλημα διαπερατότητας.

Degree: 2017, National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ)

The main object of this thesis is the investigation of the inverse transmission eigenvalue problem, that is the determination of the refractive index of an… (more)

Subjects/Keywords: Εσωτερικό πρόβλημα διαπερατότητας; Ιδιοτιμές διαπερατότητας; Αντίστροφο πρόβλημα διαπερατότητας; Ασυνεχές αντίστροφο πρόβλημα ιδιοτιμών; Αντίστροφο φασματικό πρόβλημα; Τετραγωνικό πρόβλημα ιδιοτιμών; Κατά τμήματα σταθερός δείκτης διάθλασης; Interior transmission problem; Transmission eigenalues; Inverse transmission eigenvalue problem; Discontinuous inverse eigenvalue problem; Inverse spectral problem; Quadratic eigenvalue problem; Piecewise constant refractive index

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pallikarakis, N. (2017). Το αντίστροφο φασματικό πρόβλημα της εύρεσης του δείκτη διάθλασης για το εσωτερικό πρόβλημα διαπερατότητας. (Thesis). National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Retrieved from http://hdl.handle.net/10442/hedi/40578

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pallikarakis, Nikolaos. “Το αντίστροφο φασματικό πρόβλημα της εύρεσης του δείκτη διάθλασης για το εσωτερικό πρόβλημα διαπερατότητας.” 2017. Thesis, National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Accessed April 14, 2021. http://hdl.handle.net/10442/hedi/40578.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pallikarakis, Nikolaos. “Το αντίστροφο φασματικό πρόβλημα της εύρεσης του δείκτη διάθλασης για το εσωτερικό πρόβλημα διαπερατότητας.” 2017. Web. 14 Apr 2021.

Vancouver:

Pallikarakis N. Το αντίστροφο φασματικό πρόβλημα της εύρεσης του δείκτη διάθλασης για το εσωτερικό πρόβλημα διαπερατότητας. [Internet] [Thesis]. National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ); 2017. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/10442/hedi/40578.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pallikarakis N. Το αντίστροφο φασματικό πρόβλημα της εύρεσης του δείκτη διάθλασης για το εσωτερικό πρόβλημα διαπερατότητας. [Thesis]. National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ); 2017. Available from: http://hdl.handle.net/10442/hedi/40578

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

10. LEE, YU-HAO. The theory of transformation operators and its application in inverse spectral problems.

Degree: Master, Applied Mathematics, 2005, NSYSU

 The inverse spectral problem is the problem of understanding the potential function of the Sturm-Liouville operator from the set of eigenvalues plus some additional spectral… (more)

Subjects/Keywords: eigenvalue; Transformation operator; spectral problem; eigenvector

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

LEE, Y. (2005). The theory of transformation operators and its application in inverse spectral problems. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0704105-182611

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

LEE, YU-HAO. “The theory of transformation operators and its application in inverse spectral problems.” 2005. Thesis, NSYSU. Accessed April 14, 2021. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0704105-182611.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

LEE, YU-HAO. “The theory of transformation operators and its application in inverse spectral problems.” 2005. Web. 14 Apr 2021.

Vancouver:

LEE Y. The theory of transformation operators and its application in inverse spectral problems. [Internet] [Thesis]. NSYSU; 2005. [cited 2021 Apr 14]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0704105-182611.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

LEE Y. The theory of transformation operators and its application in inverse spectral problems. [Thesis]. NSYSU; 2005. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0704105-182611

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Bath

11. Scheben, Fynn. Iterative methods for criticality computations in neutron transport theory.

Degree: PhD, 2011, University of Bath

 This thesis studies the so-called “criticality problem”, an important generalised eigenvalue problem arising in neutron transport theory. The smallest positive real eigenvalue of the problem(more)

Subjects/Keywords: 518; linear Boltzmann equation; criticality; neutron transport; inverse iteration; inexact solves; iterative methods; eigenvalue problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scheben, F. (2011). Iterative methods for criticality computations in neutron transport theory. (Doctoral Dissertation). University of Bath. Retrieved from https://researchportal.bath.ac.uk/en/studentthesis/iterative-methods-for-criticality-computations-in-neutron-transport-theory(286d7964-202f-43d2-b41c-4a3fb3732b52).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.545319

Chicago Manual of Style (16th Edition):

Scheben, Fynn. “Iterative methods for criticality computations in neutron transport theory.” 2011. Doctoral Dissertation, University of Bath. Accessed April 14, 2021. https://researchportal.bath.ac.uk/en/studentthesis/iterative-methods-for-criticality-computations-in-neutron-transport-theory(286d7964-202f-43d2-b41c-4a3fb3732b52).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.545319.

MLA Handbook (7th Edition):

Scheben, Fynn. “Iterative methods for criticality computations in neutron transport theory.” 2011. Web. 14 Apr 2021.

Vancouver:

Scheben F. Iterative methods for criticality computations in neutron transport theory. [Internet] [Doctoral dissertation]. University of Bath; 2011. [cited 2021 Apr 14]. Available from: https://researchportal.bath.ac.uk/en/studentthesis/iterative-methods-for-criticality-computations-in-neutron-transport-theory(286d7964-202f-43d2-b41c-4a3fb3732b52).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.545319.

Council of Science Editors:

Scheben F. Iterative methods for criticality computations in neutron transport theory. [Doctoral Dissertation]. University of Bath; 2011. Available from: https://researchportal.bath.ac.uk/en/studentthesis/iterative-methods-for-criticality-computations-in-neutron-transport-theory(286d7964-202f-43d2-b41c-4a3fb3732b52).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.545319


University of Central Florida

12. Adams, Christine. Can One Hear...? An Exploration Into Inverse Eigenvalue Problems Related To Musical Instruments.

Degree: 2013, University of Central Florida

 The central theme of this thesis deals with problems related to the question, “Can one hear the shape of a drum?” first posed formally by… (more)

Subjects/Keywords: Inverse eigenvalue problem; music; drum; Mathematics; Dissertations, Academic  – Sciences, Sciences  – Dissertations, Academic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Adams, C. (2013). Can One Hear...? An Exploration Into Inverse Eigenvalue Problems Related To Musical Instruments. (Masters Thesis). University of Central Florida. Retrieved from https://stars.library.ucf.edu/etd/2506

Chicago Manual of Style (16th Edition):

Adams, Christine. “Can One Hear...? An Exploration Into Inverse Eigenvalue Problems Related To Musical Instruments.” 2013. Masters Thesis, University of Central Florida. Accessed April 14, 2021. https://stars.library.ucf.edu/etd/2506.

MLA Handbook (7th Edition):

Adams, Christine. “Can One Hear...? An Exploration Into Inverse Eigenvalue Problems Related To Musical Instruments.” 2013. Web. 14 Apr 2021.

Vancouver:

Adams C. Can One Hear...? An Exploration Into Inverse Eigenvalue Problems Related To Musical Instruments. [Internet] [Masters thesis]. University of Central Florida; 2013. [cited 2021 Apr 14]. Available from: https://stars.library.ucf.edu/etd/2506.

Council of Science Editors:

Adams C. Can One Hear...? An Exploration Into Inverse Eigenvalue Problems Related To Musical Instruments. [Masters Thesis]. University of Central Florida; 2013. Available from: https://stars.library.ucf.edu/etd/2506


Virginia Tech

13. Just, Frederick A. Damage Detection Based on the Geometric Interpretation of the Eigenvalue Problem.

Degree: PhD, Engineering Science and Mechanics, 1997, Virginia Tech

 A method that can be used to detect damage in structures is developed. This method is based on the convexity of the geometric interpretation of… (more)

Subjects/Keywords: Eigenvalue Problem; Convex Set; Damage Detection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Just, F. A. (1997). Damage Detection Based on the Geometric Interpretation of the Eigenvalue Problem. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/29555

Chicago Manual of Style (16th Edition):

Just, Frederick A. “Damage Detection Based on the Geometric Interpretation of the Eigenvalue Problem.” 1997. Doctoral Dissertation, Virginia Tech. Accessed April 14, 2021. http://hdl.handle.net/10919/29555.

MLA Handbook (7th Edition):

Just, Frederick A. “Damage Detection Based on the Geometric Interpretation of the Eigenvalue Problem.” 1997. Web. 14 Apr 2021.

Vancouver:

Just FA. Damage Detection Based on the Geometric Interpretation of the Eigenvalue Problem. [Internet] [Doctoral dissertation]. Virginia Tech; 1997. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/10919/29555.

Council of Science Editors:

Just FA. Damage Detection Based on the Geometric Interpretation of the Eigenvalue Problem. [Doctoral Dissertation]. Virginia Tech; 1997. Available from: http://hdl.handle.net/10919/29555


Kansas State University

14. Xu, Leidong. Acceleration of the power and related methods with dynamic mode decomposition.

Degree: MS, Department of Mechanical and Nuclear Engineering, 2019, Kansas State University

 An algorithm based on dynamic mode decomposition (DMD) is presented for acceleration of the power method (PM) and fattened power method (FPM) that takes advantage… (more)

Subjects/Keywords: Power method; Dynamic Mode Decomposition; Acceleration; Nuclear Engineering; Numerical Simulation; Eigenvalue Problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xu, L. (2019). Acceleration of the power and related methods with dynamic mode decomposition. (Masters Thesis). Kansas State University. Retrieved from http://hdl.handle.net/2097/40267

Chicago Manual of Style (16th Edition):

Xu, Leidong. “Acceleration of the power and related methods with dynamic mode decomposition.” 2019. Masters Thesis, Kansas State University. Accessed April 14, 2021. http://hdl.handle.net/2097/40267.

MLA Handbook (7th Edition):

Xu, Leidong. “Acceleration of the power and related methods with dynamic mode decomposition.” 2019. Web. 14 Apr 2021.

Vancouver:

Xu L. Acceleration of the power and related methods with dynamic mode decomposition. [Internet] [Masters thesis]. Kansas State University; 2019. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/2097/40267.

Council of Science Editors:

Xu L. Acceleration of the power and related methods with dynamic mode decomposition. [Masters Thesis]. Kansas State University; 2019. Available from: http://hdl.handle.net/2097/40267

15. Andrade Neto, Jayme. O problema do k-Autovalor em estudos de criticalidade.

Degree: 2018, Brazil

Neste trabalho o problema do cálculo do chamado fator de multiplicação em problemas de criticalidade de um reator nuclear, autovalor dominante k, em meio unidimensional… (more)

Subjects/Keywords: Método analítico de ordenadas discretas; K-eigenvalue problem; Analytical discrete ordinates; Coarse-mesh finite difference

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Andrade Neto, J. (2018). O problema do k-Autovalor em estudos de criticalidade. (Doctoral Dissertation). Brazil. Retrieved from http://hdl.handle.net/10183/196840

Chicago Manual of Style (16th Edition):

Andrade Neto, Jayme. “O problema do k-Autovalor em estudos de criticalidade.” 2018. Doctoral Dissertation, Brazil. Accessed April 14, 2021. http://hdl.handle.net/10183/196840.

MLA Handbook (7th Edition):

Andrade Neto, Jayme. “O problema do k-Autovalor em estudos de criticalidade.” 2018. Web. 14 Apr 2021.

Vancouver:

Andrade Neto J. O problema do k-Autovalor em estudos de criticalidade. [Internet] [Doctoral dissertation]. Brazil; 2018. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/10183/196840.

Council of Science Editors:

Andrade Neto J. O problema do k-Autovalor em estudos de criticalidade. [Doctoral Dissertation]. Brazil; 2018. Available from: http://hdl.handle.net/10183/196840


Brigham Young University

16. Nelson, Curtis G. Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs.

Degree: MS, 2012, Brigham Young University

 Let F be a field, let G be an undirected graph on n vertices, and let SF(G) be the set of all F-valued symmetric n… (more)

Subjects/Keywords: Combinatorial Matrix Theory; Diagonal Entry Restrictions; Graph; Inverse Eigenvalue Problem; Inverse Inertia Problem; Minimum Rank; Neutral; Nil; Nonzero; Symmetric; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nelson, C. G. (2012). Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4245&context=etd

Chicago Manual of Style (16th Edition):

Nelson, Curtis G. “Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs.” 2012. Masters Thesis, Brigham Young University. Accessed April 14, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4245&context=etd.

MLA Handbook (7th Edition):

Nelson, Curtis G. “Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs.” 2012. Web. 14 Apr 2021.

Vancouver:

Nelson CG. Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs. [Internet] [Masters thesis]. Brigham Young University; 2012. [cited 2021 Apr 14]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4245&context=etd.

Council of Science Editors:

Nelson CG. Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs. [Masters Thesis]. Brigham Young University; 2012. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4245&context=etd


University of Southern California

17. Meidani, Hadi. Uncertainty management for complex systems of systems: applications to the future smart grid.

Degree: PhD, Civil Engineering, 2014, University of Southern California

 Today, many of the infrastructures are composed of several coupled sub-systems, many of which are by themselves complex, and further couplings introduce yet more complexities… (more)

Subjects/Keywords: uncertainty quantification; Markov chains; random eigenvalue problem; maximum entropy; consensus problem; systems of systems; robust decision making; smart grid; structural dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meidani, H. (2014). Uncertainty management for complex systems of systems: applications to the future smart grid. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/94167/rec/7666

Chicago Manual of Style (16th Edition):

Meidani, Hadi. “Uncertainty management for complex systems of systems: applications to the future smart grid.” 2014. Doctoral Dissertation, University of Southern California. Accessed April 14, 2021. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/94167/rec/7666.

MLA Handbook (7th Edition):

Meidani, Hadi. “Uncertainty management for complex systems of systems: applications to the future smart grid.” 2014. Web. 14 Apr 2021.

Vancouver:

Meidani H. Uncertainty management for complex systems of systems: applications to the future smart grid. [Internet] [Doctoral dissertation]. University of Southern California; 2014. [cited 2021 Apr 14]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/94167/rec/7666.

Council of Science Editors:

Meidani H. Uncertainty management for complex systems of systems: applications to the future smart grid. [Doctoral Dissertation]. University of Southern California; 2014. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/94167/rec/7666


KTH

18. Ugarte, Crystal. A numerical investigation of Anderson localization in weakly interacting Bose gases.

Degree: NA, 2020, KTH

The ground state of a quantum system is the minimizer of the total energy of that system. The aim of this thesis is to… (more)

Subjects/Keywords: Applied mathematics; finite elements; eigenvalue solver; eigenvalue problem; Bose-Einstein Codensate; Finita elementmetoden; tillämpad matematik; Bose-Einstein kondensat; egenvärdesalgoritm; egenvärdesproblem; Mathematics; Matematik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ugarte, C. (2020). A numerical investigation of Anderson localization in weakly interacting Bose gases. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-269167

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ugarte, Crystal. “A numerical investigation of Anderson localization in weakly interacting Bose gases.” 2020. Thesis, KTH. Accessed April 14, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-269167.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ugarte, Crystal. “A numerical investigation of Anderson localization in weakly interacting Bose gases.” 2020. Web. 14 Apr 2021.

Vancouver:

Ugarte C. A numerical investigation of Anderson localization in weakly interacting Bose gases. [Internet] [Thesis]. KTH; 2020. [cited 2021 Apr 14]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-269167.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ugarte C. A numerical investigation of Anderson localization in weakly interacting Bose gases. [Thesis]. KTH; 2020. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-269167

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Genseberger, M. Domain decomposition in the Jacobi-Davidson method for eigenproblems.

Degree: 2001, University Utrecht

 Grootschalige eigenwaardeproblemen spelen een belangrijke rol in wetenschappelijk onderzoek naar een breed scala van fenomenen. Deze fenomenen hebben vaak niet de belangstelling van wetenschappers alleen,… (more)

Subjects/Keywords: Eigenvalue problem; domain decomposition; iterative method; Jacobi-Davidson; Schwarz method; eigenvalue; eigenvector

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Genseberger, M. (2001). Domain decomposition in the Jacobi-Davidson method for eigenproblems. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/861 ; URN:NBN:NL:UI:10-1874-861 ; 1874/861 ; URN:NBN:NL:UI:10-1874-861 ; https://dspace.library.uu.nl/handle/1874/861

Chicago Manual of Style (16th Edition):

Genseberger, M. “Domain decomposition in the Jacobi-Davidson method for eigenproblems.” 2001. Doctoral Dissertation, University Utrecht. Accessed April 14, 2021. https://dspace.library.uu.nl/handle/1874/861 ; URN:NBN:NL:UI:10-1874-861 ; 1874/861 ; URN:NBN:NL:UI:10-1874-861 ; https://dspace.library.uu.nl/handle/1874/861.

MLA Handbook (7th Edition):

Genseberger, M. “Domain decomposition in the Jacobi-Davidson method for eigenproblems.” 2001. Web. 14 Apr 2021.

Vancouver:

Genseberger M. Domain decomposition in the Jacobi-Davidson method for eigenproblems. [Internet] [Doctoral dissertation]. University Utrecht; 2001. [cited 2021 Apr 14]. Available from: https://dspace.library.uu.nl/handle/1874/861 ; URN:NBN:NL:UI:10-1874-861 ; 1874/861 ; URN:NBN:NL:UI:10-1874-861 ; https://dspace.library.uu.nl/handle/1874/861.

Council of Science Editors:

Genseberger M. Domain decomposition in the Jacobi-Davidson method for eigenproblems. [Doctoral Dissertation]. University Utrecht; 2001. Available from: https://dspace.library.uu.nl/handle/1874/861 ; URN:NBN:NL:UI:10-1874-861 ; 1874/861 ; URN:NBN:NL:UI:10-1874-861 ; https://dspace.library.uu.nl/handle/1874/861

20. Hochstenbach, Michiel Erik. Subspace Methods for Eigenvalue Problems.

Degree: 2003, University Utrecht

 This thesis treats a number of aspects of subspace methods for various eigenvalue problems. Vibrations and their corresponding eigenvalues (or frequencies) arise in science, engineering,… (more)

Subjects/Keywords: eigenvalue problem; subspace method; Jacobi-Davidson; Lanczos; two-sided subspace method; large sparse matrix; generalized eigenproblem; singular value decomposition; polynomial eigenvalue problem; multiparameter eigenvalue problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hochstenbach, M. E. (2003). Subspace Methods for Eigenvalue Problems. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/881 ; URN:NBN:NL:UI:10-1874-881 ; 1874/881 ; URN:NBN:NL:UI:10-1874-881 ; https://dspace.library.uu.nl/handle/1874/881

Chicago Manual of Style (16th Edition):

Hochstenbach, Michiel Erik. “Subspace Methods for Eigenvalue Problems.” 2003. Doctoral Dissertation, University Utrecht. Accessed April 14, 2021. https://dspace.library.uu.nl/handle/1874/881 ; URN:NBN:NL:UI:10-1874-881 ; 1874/881 ; URN:NBN:NL:UI:10-1874-881 ; https://dspace.library.uu.nl/handle/1874/881.

MLA Handbook (7th Edition):

Hochstenbach, Michiel Erik. “Subspace Methods for Eigenvalue Problems.” 2003. Web. 14 Apr 2021.

Vancouver:

Hochstenbach ME. Subspace Methods for Eigenvalue Problems. [Internet] [Doctoral dissertation]. University Utrecht; 2003. [cited 2021 Apr 14]. Available from: https://dspace.library.uu.nl/handle/1874/881 ; URN:NBN:NL:UI:10-1874-881 ; 1874/881 ; URN:NBN:NL:UI:10-1874-881 ; https://dspace.library.uu.nl/handle/1874/881.

Council of Science Editors:

Hochstenbach ME. Subspace Methods for Eigenvalue Problems. [Doctoral Dissertation]. University Utrecht; 2003. Available from: https://dspace.library.uu.nl/handle/1874/881 ; URN:NBN:NL:UI:10-1874-881 ; 1874/881 ; URN:NBN:NL:UI:10-1874-881 ; https://dspace.library.uu.nl/handle/1874/881


NSYSU

21. Zhu, Jun-hui. Design and Characterization of Laser Resonators with Intra-cavity Azimuthal Symmetry-breaking optics.

Degree: Master, Electro-Optical Engineering, 2016, NSYSU

 Optical vortex (OV) is more than a beam of donor-shaped intensity pro- file. It carries well-defined orbital angular momentum (OAM) in the photons within. The… (more)

Subjects/Keywords: spiral phase plate; azimuthal symmetry breaking; nonlinear eigenvalue problem; specific relative angular momentum; ray transfer matrix; optical vortex; orbital angular momentum

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhu, J. (2016). Design and Characterization of Laser Resonators with Intra-cavity Azimuthal Symmetry-breaking optics. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612116-132113

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhu, Jun-hui. “Design and Characterization of Laser Resonators with Intra-cavity Azimuthal Symmetry-breaking optics.” 2016. Thesis, NSYSU. Accessed April 14, 2021. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612116-132113.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhu, Jun-hui. “Design and Characterization of Laser Resonators with Intra-cavity Azimuthal Symmetry-breaking optics.” 2016. Web. 14 Apr 2021.

Vancouver:

Zhu J. Design and Characterization of Laser Resonators with Intra-cavity Azimuthal Symmetry-breaking optics. [Internet] [Thesis]. NSYSU; 2016. [cited 2021 Apr 14]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612116-132113.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhu J. Design and Characterization of Laser Resonators with Intra-cavity Azimuthal Symmetry-breaking optics. [Thesis]. NSYSU; 2016. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612116-132113

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

22. Choudhary, Shalu. Numerical Methods For Solving The Eigenvalue Problem Involved In The Karhunen-Loeve Decomposition.

Degree: MSc Engg, Faculty of Engineering, 2014, Indian Institute of Science

 In structural analysis and design it is important to consider the effects of uncertainties in loading and material properties in a rational way. Uncertainty in… (more)

Subjects/Keywords: Karhunen-Loeve Decomposition; Eigenvalue Problem; Numerical Analysis; Structural Analysis (Engineering); Eigenfunctions; Eigenvalues; Gaussian Random Field; Structural Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Choudhary, S. (2014). Numerical Methods For Solving The Eigenvalue Problem Involved In The Karhunen-Loeve Decomposition. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2308

Chicago Manual of Style (16th Edition):

Choudhary, Shalu. “Numerical Methods For Solving The Eigenvalue Problem Involved In The Karhunen-Loeve Decomposition.” 2014. Masters Thesis, Indian Institute of Science. Accessed April 14, 2021. http://etd.iisc.ac.in/handle/2005/2308.

MLA Handbook (7th Edition):

Choudhary, Shalu. “Numerical Methods For Solving The Eigenvalue Problem Involved In The Karhunen-Loeve Decomposition.” 2014. Web. 14 Apr 2021.

Vancouver:

Choudhary S. Numerical Methods For Solving The Eigenvalue Problem Involved In The Karhunen-Loeve Decomposition. [Internet] [Masters thesis]. Indian Institute of Science; 2014. [cited 2021 Apr 14]. Available from: http://etd.iisc.ac.in/handle/2005/2308.

Council of Science Editors:

Choudhary S. Numerical Methods For Solving The Eigenvalue Problem Involved In The Karhunen-Loeve Decomposition. [Masters Thesis]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2308


Washington State University

23. [No author]. On the computation of eigenvalues, spectral bounds, and Hessenberg form for matrix polynomials .

Degree: 2016, Washington State University

 In this dissertation we focus on root-finding methods, such as Laguerre's method, for solving the polynomial eigenvalue problem. Serious consideration is given to the initial… (more)

Subjects/Keywords: Mathematics; Hessenberg form; Laguerre's method; matrix polynomials; polynomial eigenvalue problem; root finding algorithm; Unitary matrix polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

author], [. (2016). On the computation of eigenvalues, spectral bounds, and Hessenberg form for matrix polynomials . (Thesis). Washington State University. Retrieved from http://hdl.handle.net/2376/12050

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

author], [No. “On the computation of eigenvalues, spectral bounds, and Hessenberg form for matrix polynomials .” 2016. Thesis, Washington State University. Accessed April 14, 2021. http://hdl.handle.net/2376/12050.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

author], [No. “On the computation of eigenvalues, spectral bounds, and Hessenberg form for matrix polynomials .” 2016. Web. 14 Apr 2021.

Vancouver:

author] [. On the computation of eigenvalues, spectral bounds, and Hessenberg form for matrix polynomials . [Internet] [Thesis]. Washington State University; 2016. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/2376/12050.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. On the computation of eigenvalues, spectral bounds, and Hessenberg form for matrix polynomials . [Thesis]. Washington State University; 2016. Available from: http://hdl.handle.net/2376/12050

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université Montpellier II

24. Wieczorek, Kerstin. Numerical Study of Mach Number Effects on Combustion Instability : Etude numérique des effets du nombre de Mach sur les instabilités de combustion.

Degree: Docteur es, Mathématiques appliquées et applications des mathématiques, 2010, Université Montpellier II

L'évolution des turbines à gaz vers des régimes de combustion en mélange pauvre augmente la sensibilité de la flamme aux perturbations de l'écoulement. Plus particulièrement,… (more)

Subjects/Keywords: Acoustique; Instabilité de Combustion; Equations d'Euler linéarisées; Problème aux valeurs propres; Acoustics; Combustion Instability; Linearized Euler Equations; Eigenvalue Problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wieczorek, K. (2010). Numerical Study of Mach Number Effects on Combustion Instability : Etude numérique des effets du nombre de Mach sur les instabilités de combustion. (Doctoral Dissertation). Université Montpellier II. Retrieved from http://www.theses.fr/2010MON20106

Chicago Manual of Style (16th Edition):

Wieczorek, Kerstin. “Numerical Study of Mach Number Effects on Combustion Instability : Etude numérique des effets du nombre de Mach sur les instabilités de combustion.” 2010. Doctoral Dissertation, Université Montpellier II. Accessed April 14, 2021. http://www.theses.fr/2010MON20106.

MLA Handbook (7th Edition):

Wieczorek, Kerstin. “Numerical Study of Mach Number Effects on Combustion Instability : Etude numérique des effets du nombre de Mach sur les instabilités de combustion.” 2010. Web. 14 Apr 2021.

Vancouver:

Wieczorek K. Numerical Study of Mach Number Effects on Combustion Instability : Etude numérique des effets du nombre de Mach sur les instabilités de combustion. [Internet] [Doctoral dissertation]. Université Montpellier II; 2010. [cited 2021 Apr 14]. Available from: http://www.theses.fr/2010MON20106.

Council of Science Editors:

Wieczorek K. Numerical Study of Mach Number Effects on Combustion Instability : Etude numérique des effets du nombre de Mach sur les instabilités de combustion. [Doctoral Dissertation]. Université Montpellier II; 2010. Available from: http://www.theses.fr/2010MON20106

25. Neely, Kara. Towards the Resolution of an Eigenvalue Problem for the 2-Hessian Operator.

Degree: 2014, University of Illinois – Chicago

 The motivation for the work done in this thesis is the resolution of an eigenvalue problem for the 2-Hessian operator. In order to be in… (more)

Subjects/Keywords: 2-Hessian; Monge-Ampere; eigenvalue problem

…dimensional Poisson equation. Another problem similar to (Equation 1.2) is the eigenvalue… …problem for the Poisson equation, also known as the Lapacian eigenvalue problem. This is solved… …0.0008731 1.974998883 CHAPTER 3 THE LAPLACIAN EIGENVALUE PROBLEM The Laplace operator or… …propagation, and quantum mechanics (Sauer, 2006). The Laplacian eigenvalue problem is ∆u… …domain Ω = [0, 1]m that will be reduced to a simple matrix eigenvalue problem. We… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Neely, K. (2014). Towards the Resolution of an Eigenvalue Problem for the 2-Hessian Operator. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/11263

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Neely, Kara. “Towards the Resolution of an Eigenvalue Problem for the 2-Hessian Operator.” 2014. Thesis, University of Illinois – Chicago. Accessed April 14, 2021. http://hdl.handle.net/10027/11263.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Neely, Kara. “Towards the Resolution of an Eigenvalue Problem for the 2-Hessian Operator.” 2014. Web. 14 Apr 2021.

Vancouver:

Neely K. Towards the Resolution of an Eigenvalue Problem for the 2-Hessian Operator. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/10027/11263.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Neely K. Towards the Resolution of an Eigenvalue Problem for the 2-Hessian Operator. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/11263

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

26. Ellard, Richard. Spectral properties of nonnegative matrices.

Degree: 2017, University College Dublin. School of Mathematics and Statistics  

 The spectral properties of nonnegative matrices have intrigued pure and applied mathematicians alike, beginning with the classical works of Oskar Perron and Georg Frobenius at… (more)

Subjects/Keywords: Diagonal Elements; Matrix Theory; Newton's Inequalities; Nonnegative Inverse Eigenvalue Problem; Nonnegative Matrices; Soules Matrix; 0|aNon-negative matrices.; #0|aEigenvalues.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ellard, R. (2017). Spectral properties of nonnegative matrices. (Thesis). University College Dublin. School of Mathematics and Statistics  . Retrieved from http://hdl.handle.net/10197/8597

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ellard, Richard. “Spectral properties of nonnegative matrices.” 2017. Thesis, University College Dublin. School of Mathematics and Statistics  . Accessed April 14, 2021. http://hdl.handle.net/10197/8597.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ellard, Richard. “Spectral properties of nonnegative matrices.” 2017. Web. 14 Apr 2021.

Vancouver:

Ellard R. Spectral properties of nonnegative matrices. [Internet] [Thesis]. University College Dublin. School of Mathematics and Statistics  ; 2017. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/10197/8597.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ellard R. Spectral properties of nonnegative matrices. [Thesis]. University College Dublin. School of Mathematics and Statistics  ; 2017. Available from: http://hdl.handle.net/10197/8597

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

27. Poulson, Jack Lesly. Formalized parallel dense linear algebra and its application to the generalized eigenvalue problem.

Degree: MSin Engineering, Aerospace Engineering, 2009, University of Texas – Austin

 This thesis demonstrates an efficient parallel method of solving the generalized eigenvalue problem, KΦ = M ΦΛ, where K is symmetric and M is symmetric… (more)

Subjects/Keywords: generalized eigenvalue problem; parallel dense linear algebra

…generalized eigenvalue problem (EVP) is the search for nontrivial solutions to Ax = λBx… …standard form eigenvalue problem in parallel, Hendrickson, Jessup, and Smith[16]… …of the new algorithm for the reduction of the generalized eigenvalue problem to standard… …eigenpair (λ, x) ∈ R × Rn . λ is called an eigenvalue of the system, and x is referred… …to as an eigenvector[20]. If one wishes to find multiple eigenpairs, the problem… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Poulson, J. L. (2009). Formalized parallel dense linear algebra and its application to the generalized eigenvalue problem. (Masters Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2009-05-139

Chicago Manual of Style (16th Edition):

Poulson, Jack Lesly. “Formalized parallel dense linear algebra and its application to the generalized eigenvalue problem.” 2009. Masters Thesis, University of Texas – Austin. Accessed April 14, 2021. http://hdl.handle.net/2152/ETD-UT-2009-05-139.

MLA Handbook (7th Edition):

Poulson, Jack Lesly. “Formalized parallel dense linear algebra and its application to the generalized eigenvalue problem.” 2009. Web. 14 Apr 2021.

Vancouver:

Poulson JL. Formalized parallel dense linear algebra and its application to the generalized eigenvalue problem. [Internet] [Masters thesis]. University of Texas – Austin; 2009. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/2152/ETD-UT-2009-05-139.

Council of Science Editors:

Poulson JL. Formalized parallel dense linear algebra and its application to the generalized eigenvalue problem. [Masters Thesis]. University of Texas – Austin; 2009. Available from: http://hdl.handle.net/2152/ETD-UT-2009-05-139


Princeton University

28. Avanesyan, Levon. Optimal investment in incomplete markets with multiple Brownian externalities .

Degree: PhD, 2021, Princeton University

 An investor’s optimal market portfolio is shaped by their investment performance criterion. The latter is largely determined by the investor's idiosyncratic objectives and preferences. This… (more)

Subjects/Keywords: eigenvalue equality correlation structure; forward performance process; merton problem; multiple externalities; power mixture; sharpe ratio separable model

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Avanesyan, L. (2021). Optimal investment in incomplete markets with multiple Brownian externalities . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01m613n165k

Chicago Manual of Style (16th Edition):

Avanesyan, Levon. “Optimal investment in incomplete markets with multiple Brownian externalities .” 2021. Doctoral Dissertation, Princeton University. Accessed April 14, 2021. http://arks.princeton.edu/ark:/88435/dsp01m613n165k.

MLA Handbook (7th Edition):

Avanesyan, Levon. “Optimal investment in incomplete markets with multiple Brownian externalities .” 2021. Web. 14 Apr 2021.

Vancouver:

Avanesyan L. Optimal investment in incomplete markets with multiple Brownian externalities . [Internet] [Doctoral dissertation]. Princeton University; 2021. [cited 2021 Apr 14]. Available from: http://arks.princeton.edu/ark:/88435/dsp01m613n165k.

Council of Science Editors:

Avanesyan L. Optimal investment in incomplete markets with multiple Brownian externalities . [Doctoral Dissertation]. Princeton University; 2021. Available from: http://arks.princeton.edu/ark:/88435/dsp01m613n165k

29. Camacho, Frankie. An Inverse-Free Projected Gradient Descent Method for the Generalized Eigenvalue Problem.

Degree: MA, Engineering, 2017, Rice University

 The generalized eigenvalue problem is a fundamental numerical linear algebra problem whose applications are wide ranging. For truly large-scale problems, matrices themselves are often not… (more)

Subjects/Keywords: generalized eigenvalue problem; linear algebra; unconstrained optimization

eigenvalue problem AXk = BXk ⇤k , (1.0.1) where A, B 2 Rn⇥n are symmetric, B is… …eigenpairs for the generalized eigenvalue problem, which we call lobpcg, involves an iterative… …generalized eigenvalue problem–an expensive proposition whenever k becomes a considerable portion of… …One approach for solving the generalized eigenvalue problem that is somewhat similar to 14… …generalized eigenvalue problem, we first recall that in [20] the authors looked to solve… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Camacho, F. (2017). An Inverse-Free Projected Gradient Descent Method for the Generalized Eigenvalue Problem. (Masters Thesis). Rice University. Retrieved from http://hdl.handle.net/1911/96001

Chicago Manual of Style (16th Edition):

Camacho, Frankie. “An Inverse-Free Projected Gradient Descent Method for the Generalized Eigenvalue Problem.” 2017. Masters Thesis, Rice University. Accessed April 14, 2021. http://hdl.handle.net/1911/96001.

MLA Handbook (7th Edition):

Camacho, Frankie. “An Inverse-Free Projected Gradient Descent Method for the Generalized Eigenvalue Problem.” 2017. Web. 14 Apr 2021.

Vancouver:

Camacho F. An Inverse-Free Projected Gradient Descent Method for the Generalized Eigenvalue Problem. [Internet] [Masters thesis]. Rice University; 2017. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/1911/96001.

Council of Science Editors:

Camacho F. An Inverse-Free Projected Gradient Descent Method for the Generalized Eigenvalue Problem. [Masters Thesis]. Rice University; 2017. Available from: http://hdl.handle.net/1911/96001


University of Southern Mississippi

30. Perera, Subagya. Homotopy Analysis Method For Nonlinear Ordinary Eigenvalue Problems.

Degree: MS, 2020, University of Southern Mississippi

  In this thesis, we solve nonlinear differential equations by the homotopy analysis method (HAM), which is a semi-analytic method first introduced by Shijun Liao… (more)

Subjects/Keywords: Nonlinear initial value problem; Nonlinear eigenvalue problem; Homotopy analysis method; Duffing's equation; Perturbation theory; Differential Equation.; Ordinary Differential Equations and Applied Dynamics; Other Applied Mathematics; Other Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perera, S. (2020). Homotopy Analysis Method For Nonlinear Ordinary Eigenvalue Problems. (Masters Thesis). University of Southern Mississippi. Retrieved from https://aquila.usm.edu/masters_theses/720

Chicago Manual of Style (16th Edition):

Perera, Subagya. “Homotopy Analysis Method For Nonlinear Ordinary Eigenvalue Problems.” 2020. Masters Thesis, University of Southern Mississippi. Accessed April 14, 2021. https://aquila.usm.edu/masters_theses/720.

MLA Handbook (7th Edition):

Perera, Subagya. “Homotopy Analysis Method For Nonlinear Ordinary Eigenvalue Problems.” 2020. Web. 14 Apr 2021.

Vancouver:

Perera S. Homotopy Analysis Method For Nonlinear Ordinary Eigenvalue Problems. [Internet] [Masters thesis]. University of Southern Mississippi; 2020. [cited 2021 Apr 14]. Available from: https://aquila.usm.edu/masters_theses/720.

Council of Science Editors:

Perera S. Homotopy Analysis Method For Nonlinear Ordinary Eigenvalue Problems. [Masters Thesis]. University of Southern Mississippi; 2020. Available from: https://aquila.usm.edu/masters_theses/720

[1] [2] [3]

.