Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( delay differential equation). Showing records 1 – 30 of 13902 total matches.

[1] [2] [3] [4] [5] … [464]

Search Limiters

Last 2 Years | English Only

Degrees

Languages

Country

▼ Search Limiters


Cornell University

1. Heckman, Christoffer. Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators.

Degree: PhD, Theoretical and Applied Mechanics, 2012, Cornell University

 Two vibrating bubbles submerged in a fluid influence each others' dynamics via sound waves in the fluid. Due to finite sound speed, there is a… (more)

Subjects/Keywords: microbubble; differential delay equation; perturbation methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Heckman, C. (2012). Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/31000

Chicago Manual of Style (16th Edition):

Heckman, Christoffer. “Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators.” 2012. Doctoral Dissertation, Cornell University. Accessed October 01, 2020. http://hdl.handle.net/1813/31000.

MLA Handbook (7th Edition):

Heckman, Christoffer. “Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators.” 2012. Web. 01 Oct 2020.

Vancouver:

Heckman C. Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators. [Internet] [Doctoral dissertation]. Cornell University; 2012. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1813/31000.

Council of Science Editors:

Heckman C. Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators. [Doctoral Dissertation]. Cornell University; 2012. Available from: http://hdl.handle.net/1813/31000

2. Kosovalic, Nemanja. Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization.

Degree: PhD, Mathematics & Statistics, 2015, York University

 Consider a population of individuals occupying some habitat, and assume that the population is structured by age. Suppose that there are two distinct life stages,… (more)

Subjects/Keywords: Applied mathematics; Functional differential equation; State-dependent delay; Nonlinear analysis; Age structured population

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kosovalic, N. (2015). Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization. (Doctoral Dissertation). York University. Retrieved from http://hdl.handle.net/10315/28208

Chicago Manual of Style (16th Edition):

Kosovalic, Nemanja. “Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization.” 2015. Doctoral Dissertation, York University. Accessed October 01, 2020. http://hdl.handle.net/10315/28208.

MLA Handbook (7th Edition):

Kosovalic, Nemanja. “Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization.” 2015. Web. 01 Oct 2020.

Vancouver:

Kosovalic N. Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization. [Internet] [Doctoral dissertation]. York University; 2015. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/10315/28208.

Council of Science Editors:

Kosovalic N. Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization. [Doctoral Dissertation]. York University; 2015. Available from: http://hdl.handle.net/10315/28208


University of Iowa

3. Zhou, Ziqian. Statistical inference of distributed delay differential equations.

Degree: PhD, Statistics, 2016, University of Iowa

  In this study, we aim to develop new likelihood based method for estimating parameters of ordinary differential equations (ODEs) / delay differential equations (DDEs)… (more)

Subjects/Keywords: Delay Differential Equation; Epidemiology; Generalized Profiling; SPARSE REGULARIZATION; Time Varying Parameters; Statistics and Probability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhou, Z. (2016). Statistical inference of distributed delay differential equations. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/2173

Chicago Manual of Style (16th Edition):

Zhou, Ziqian. “Statistical inference of distributed delay differential equations.” 2016. Doctoral Dissertation, University of Iowa. Accessed October 01, 2020. https://ir.uiowa.edu/etd/2173.

MLA Handbook (7th Edition):

Zhou, Ziqian. “Statistical inference of distributed delay differential equations.” 2016. Web. 01 Oct 2020.

Vancouver:

Zhou Z. Statistical inference of distributed delay differential equations. [Internet] [Doctoral dissertation]. University of Iowa; 2016. [cited 2020 Oct 01]. Available from: https://ir.uiowa.edu/etd/2173.

Council of Science Editors:

Zhou Z. Statistical inference of distributed delay differential equations. [Doctoral Dissertation]. University of Iowa; 2016. Available from: https://ir.uiowa.edu/etd/2173


Southern Illinois University

4. Gallage, Roshini Samanthi. Approximation Of Continuously Distributed Delay Differential Equations.

Degree: MS, Mathematics, 2017, Southern Illinois University

  We establish a theorem on the approximation of the solutions of delay differential equations with continuously distributed delay with solutions of delay differential equations… (more)

Subjects/Keywords: continuous delays; DDE; Delay Differential Equation; discrete delays; predator-prey systems; Trajectories of DDE

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gallage, R. S. (2017). Approximation Of Continuously Distributed Delay Differential Equations. (Masters Thesis). Southern Illinois University. Retrieved from https://opensiuc.lib.siu.edu/theses/2196

Chicago Manual of Style (16th Edition):

Gallage, Roshini Samanthi. “Approximation Of Continuously Distributed Delay Differential Equations.” 2017. Masters Thesis, Southern Illinois University. Accessed October 01, 2020. https://opensiuc.lib.siu.edu/theses/2196.

MLA Handbook (7th Edition):

Gallage, Roshini Samanthi. “Approximation Of Continuously Distributed Delay Differential Equations.” 2017. Web. 01 Oct 2020.

Vancouver:

Gallage RS. Approximation Of Continuously Distributed Delay Differential Equations. [Internet] [Masters thesis]. Southern Illinois University; 2017. [cited 2020 Oct 01]. Available from: https://opensiuc.lib.siu.edu/theses/2196.

Council of Science Editors:

Gallage RS. Approximation Of Continuously Distributed Delay Differential Equations. [Masters Thesis]. Southern Illinois University; 2017. Available from: https://opensiuc.lib.siu.edu/theses/2196


University of Maryland

5. Dao, Hien Thi Le. Complex dynamics of a microwave time-delayed feedback loop.

Degree: Chemical Physics, 2013, University of Maryland

 The subject of this thesis is deterministic behaviors generated from a microwave time-delayed feedback loop. Time-delayed feedback systems are especially interesting because of the rich… (more)

Subjects/Keywords: Physics; Chaos; Delay differential equation; Deterministic Brownian motion; FPGA; Microwave chaos; Time-delayed

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dao, H. T. L. (2013). Complex dynamics of a microwave time-delayed feedback loop. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/15663

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dao, Hien Thi Le. “Complex dynamics of a microwave time-delayed feedback loop.” 2013. Thesis, University of Maryland. Accessed October 01, 2020. http://hdl.handle.net/1903/15663.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dao, Hien Thi Le. “Complex dynamics of a microwave time-delayed feedback loop.” 2013. Web. 01 Oct 2020.

Vancouver:

Dao HTL. Complex dynamics of a microwave time-delayed feedback loop. [Internet] [Thesis]. University of Maryland; 2013. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1903/15663.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dao HTL. Complex dynamics of a microwave time-delayed feedback loop. [Thesis]. University of Maryland; 2013. Available from: http://hdl.handle.net/1903/15663

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas A&M University

6. Zhao, Siming. Center Manifold Analysis of Delayed Lienard Equation and Its Applications.

Degree: MS, Aerospace Engineering, 2010, Texas A&M University

 Lienard Equations serve as the elegant models for oscillating circuits. Motivated by this fact, this thesis addresses the stability property of a class of delayed… (more)

Subjects/Keywords: center manifold; Lienard equation; delay differential equation; Hopf bifurcation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, S. (2010). Center Manifold Analysis of Delayed Lienard Equation and Its Applications. (Masters Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7000

Chicago Manual of Style (16th Edition):

Zhao, Siming. “Center Manifold Analysis of Delayed Lienard Equation and Its Applications.” 2010. Masters Thesis, Texas A&M University. Accessed October 01, 2020. http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7000.

MLA Handbook (7th Edition):

Zhao, Siming. “Center Manifold Analysis of Delayed Lienard Equation and Its Applications.” 2010. Web. 01 Oct 2020.

Vancouver:

Zhao S. Center Manifold Analysis of Delayed Lienard Equation and Its Applications. [Internet] [Masters thesis]. Texas A&M University; 2010. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7000.

Council of Science Editors:

Zhao S. Center Manifold Analysis of Delayed Lienard Equation and Its Applications. [Masters Thesis]. Texas A&M University; 2010. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7000


Brno University of Technology

7. Jánský, Jiří. Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications.

Degree: 2019, Brno University of Technology

 This thesis discusses the qualitative properties of some delay difference equations. These equations originate from the Θ-method discretizations of the differential equations with a delayed… (more)

Subjects/Keywords: Diferenční rovnice se zpožděním; diferenciální rovnice se zpožděním; asymptotické chování; stabilita; $\Theta$-metoda.; Delay difference equation; delay differential equation; asymptotic behaviour; stability; the $\Theta$-method.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jánský, J. (2019). Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/15628

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jánský, Jiří. “Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/15628.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jánský, Jiří. “Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications.” 2019. Web. 01 Oct 2020.

Vancouver:

Jánský J. Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/15628.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jánský J. Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/15628

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

8. Forde, Jonathan Erwin. Delay differential equation models in mathematical biology.

Degree: PhD, Pure Sciences, 2005, University of Michigan

 In this dissertation, delay differential equation models from mathematical biology are studied, focusing on population ecology. In order to even begin a study of such… (more)

Subjects/Keywords: Biology; Delay Differential Equation; Delay Differential Equations; Mathematical; Models; Sturm Sequences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Forde, J. E. (2005). Delay differential equation models in mathematical biology. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125360

Chicago Manual of Style (16th Edition):

Forde, Jonathan Erwin. “Delay differential equation models in mathematical biology.” 2005. Doctoral Dissertation, University of Michigan. Accessed October 01, 2020. http://hdl.handle.net/2027.42/125360.

MLA Handbook (7th Edition):

Forde, Jonathan Erwin. “Delay differential equation models in mathematical biology.” 2005. Web. 01 Oct 2020.

Vancouver:

Forde JE. Delay differential equation models in mathematical biology. [Internet] [Doctoral dissertation]. University of Michigan; 2005. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/2027.42/125360.

Council of Science Editors:

Forde JE. Delay differential equation models in mathematical biology. [Doctoral Dissertation]. University of Michigan; 2005. Available from: http://hdl.handle.net/2027.42/125360


Rutgers University

9. Jaquette, Jonathan Caleb, 1988-. Counting and discounting slowly oscillating periodic solutions to Wright's equation.

Degree: PhD, Mathematics, 2018, Rutgers University

A classical example of a nonlinear delay differential equations is Wright's equation: y'(t) = −αy(t − 1)[1 + y(t)],, considering α > 0 and y(t)… (more)

Subjects/Keywords: Delay differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jaquette, Jonathan Caleb, 1. (2018). Counting and discounting slowly oscillating periodic solutions to Wright's equation. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/57618/

Chicago Manual of Style (16th Edition):

Jaquette, Jonathan Caleb, 1988-. “Counting and discounting slowly oscillating periodic solutions to Wright's equation.” 2018. Doctoral Dissertation, Rutgers University. Accessed October 01, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/57618/.

MLA Handbook (7th Edition):

Jaquette, Jonathan Caleb, 1988-. “Counting and discounting slowly oscillating periodic solutions to Wright's equation.” 2018. Web. 01 Oct 2020.

Vancouver:

Jaquette, Jonathan Caleb 1. Counting and discounting slowly oscillating periodic solutions to Wright's equation. [Internet] [Doctoral dissertation]. Rutgers University; 2018. [cited 2020 Oct 01]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/57618/.

Council of Science Editors:

Jaquette, Jonathan Caleb 1. Counting and discounting slowly oscillating periodic solutions to Wright's equation. [Doctoral Dissertation]. Rutgers University; 2018. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/57618/


North Carolina State University

10. Joyner, Sarah Lynn. Dynamic Models for Insect Mortality Due to Exposure to Insecticides.

Degree: MS, Computational Mathematics, 2008, North Carolina State University

Subjects/Keywords: population models; time-dependent parameters; delay differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Joyner, S. L. (2008). Dynamic Models for Insect Mortality Due to Exposure to Insecticides. (Thesis). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/559

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Joyner, Sarah Lynn. “Dynamic Models for Insect Mortality Due to Exposure to Insecticides.” 2008. Thesis, North Carolina State University. Accessed October 01, 2020. http://www.lib.ncsu.edu/resolver/1840.16/559.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Joyner, Sarah Lynn. “Dynamic Models for Insect Mortality Due to Exposure to Insecticides.” 2008. Web. 01 Oct 2020.

Vancouver:

Joyner SL. Dynamic Models for Insect Mortality Due to Exposure to Insecticides. [Internet] [Thesis]. North Carolina State University; 2008. [cited 2020 Oct 01]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/559.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Joyner SL. Dynamic Models for Insect Mortality Due to Exposure to Insecticides. [Thesis]. North Carolina State University; 2008. Available from: http://www.lib.ncsu.edu/resolver/1840.16/559

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Colorado State University

11. Zhang, Chuan. Storing cycles in Hopfield-type neural networks.

Degree: PhD, Mathematics, 2014, Colorado State University

 The storage of pattern sequences is one of the most important tasks in both biological and artificial intelligence systems. Clarifying the underlying mathematical principles for… (more)

Subjects/Keywords: cyclic patterns; delay differential equation; Hopfield-type neural networks; nonlinear dynamics; pseudoinverse learning rule; storage and retrieval

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, C. (2014). Storing cycles in Hopfield-type neural networks. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/83828

Chicago Manual of Style (16th Edition):

Zhang, Chuan. “Storing cycles in Hopfield-type neural networks.” 2014. Doctoral Dissertation, Colorado State University. Accessed October 01, 2020. http://hdl.handle.net/10217/83828.

MLA Handbook (7th Edition):

Zhang, Chuan. “Storing cycles in Hopfield-type neural networks.” 2014. Web. 01 Oct 2020.

Vancouver:

Zhang C. Storing cycles in Hopfield-type neural networks. [Internet] [Doctoral dissertation]. Colorado State University; 2014. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/10217/83828.

Council of Science Editors:

Zhang C. Storing cycles in Hopfield-type neural networks. [Doctoral Dissertation]. Colorado State University; 2014. Available from: http://hdl.handle.net/10217/83828


University of Western Ontario

12. Bastow, Nicole. Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay.

Degree: 2016, University of Western Ontario

 The aim of this thesis is to model the impact of climate change on polar bear populations. The first model is a discrete matrix model… (more)

Subjects/Keywords: Matrix Population; Delay Differential Equation; Time-dependent; Polar Bears; Climate Change; Western Hudson Bay; Dynamic Systems; Other Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bastow, N. (2016). Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3677

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bastow, Nicole. “Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay.” 2016. Thesis, University of Western Ontario. Accessed October 01, 2020. https://ir.lib.uwo.ca/etd/3677.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bastow, Nicole. “Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay.” 2016. Web. 01 Oct 2020.

Vancouver:

Bastow N. Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay. [Internet] [Thesis]. University of Western Ontario; 2016. [cited 2020 Oct 01]. Available from: https://ir.lib.uwo.ca/etd/3677.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bastow N. Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay. [Thesis]. University of Western Ontario; 2016. Available from: https://ir.lib.uwo.ca/etd/3677

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

13. Obrátil, Štěpán. Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations.

Degree: 2019, Brno University of Technology

 The thesis deals with numerical analysis of delay differential equations. Particularly, the -method is applied to the pantograph equation considering equidistant and quasi-geometric mesh. Qualitative… (more)

Subjects/Keywords: zpožděné diferenciální rovnice; rovnice pantografu; -metoda; stabilita numerických metod; delay differential equations; pantograph equation; -method; stability of numerical methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Obrátil, . (2019). Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/175421

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Obrátil, Štěpán. “Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/175421.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Obrátil, Štěpán. “Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations.” 2019. Web. 01 Oct 2020.

Vancouver:

Obrátil . Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/175421.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Obrátil . Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/175421

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Erzgräber, H. Dynamics of delay-coupled semiconductor laser systems.

Degree: Faculty of Earth and Life Sciences, 2006, NARCIS

Subjects/Keywords: bifurcation; continuation; delay differential equation; nonlinear dynamics; semiconductor laser

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Erzgräber, H. (2006). Dynamics of delay-coupled semiconductor laser systems. (Doctoral Dissertation). NARCIS. Retrieved from https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff ; urn:nbn:nl:ui:31-1871/10553 ; 71ba6d54-45d3-45d3-a90d-0f943eec35ff ; 1871/10553 ; urn:nbn:nl:ui:31-1871/10553 ; https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff

Chicago Manual of Style (16th Edition):

Erzgräber, H. “Dynamics of delay-coupled semiconductor laser systems.” 2006. Doctoral Dissertation, NARCIS. Accessed October 01, 2020. https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff ; urn:nbn:nl:ui:31-1871/10553 ; 71ba6d54-45d3-45d3-a90d-0f943eec35ff ; 1871/10553 ; urn:nbn:nl:ui:31-1871/10553 ; https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff.

MLA Handbook (7th Edition):

Erzgräber, H. “Dynamics of delay-coupled semiconductor laser systems.” 2006. Web. 01 Oct 2020.

Vancouver:

Erzgräber H. Dynamics of delay-coupled semiconductor laser systems. [Internet] [Doctoral dissertation]. NARCIS; 2006. [cited 2020 Oct 01]. Available from: https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff ; urn:nbn:nl:ui:31-1871/10553 ; 71ba6d54-45d3-45d3-a90d-0f943eec35ff ; 1871/10553 ; urn:nbn:nl:ui:31-1871/10553 ; https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff.

Council of Science Editors:

Erzgräber H. Dynamics of delay-coupled semiconductor laser systems. [Doctoral Dissertation]. NARCIS; 2006. Available from: https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff ; urn:nbn:nl:ui:31-1871/10553 ; 71ba6d54-45d3-45d3-a90d-0f943eec35ff ; 1871/10553 ; urn:nbn:nl:ui:31-1871/10553 ; https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff


University of Guelph

15. Ghwila, Mona. Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population.

Degree: MS, Department of Mathematics and Statistics, 2017, University of Guelph

 This thesis is centered on a study of a delay system as an equivalent model of a size-structured fish population model. The delay system consists… (more)

Subjects/Keywords: Delay-Differential Equations; Size-Structured Population Model; Stage-Structured Population Model; Harvesting Strategies; juveniles and adults; Equilibrium Solution; Characteristic Equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ghwila, M. (2017). Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population. (Masters Thesis). University of Guelph. Retrieved from https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10420

Chicago Manual of Style (16th Edition):

Ghwila, Mona. “Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population.” 2017. Masters Thesis, University of Guelph. Accessed October 01, 2020. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10420.

MLA Handbook (7th Edition):

Ghwila, Mona. “Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population.” 2017. Web. 01 Oct 2020.

Vancouver:

Ghwila M. Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population. [Internet] [Masters thesis]. University of Guelph; 2017. [cited 2020 Oct 01]. Available from: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10420.

Council of Science Editors:

Ghwila M. Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population. [Masters Thesis]. University of Guelph; 2017. Available from: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10420

16. Kim, Chanwoo. Initial Boundary Value Problem of the Boltzmann Equation.

Degree: PhD, Mathematics, 2011, Brown University

 In this thesis, we study some boundary problems of the Boltzmann equation and the Boltzmann equation with the large external potential.If the gas is contained… (more)

Subjects/Keywords: partial differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kim, C. (2011). Initial Boundary Value Problem of the Boltzmann Equation. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:11308/

Chicago Manual of Style (16th Edition):

Kim, Chanwoo. “Initial Boundary Value Problem of the Boltzmann Equation.” 2011. Doctoral Dissertation, Brown University. Accessed October 01, 2020. https://repository.library.brown.edu/studio/item/bdr:11308/.

MLA Handbook (7th Edition):

Kim, Chanwoo. “Initial Boundary Value Problem of the Boltzmann Equation.” 2011. Web. 01 Oct 2020.

Vancouver:

Kim C. Initial Boundary Value Problem of the Boltzmann Equation. [Internet] [Doctoral dissertation]. Brown University; 2011. [cited 2020 Oct 01]. Available from: https://repository.library.brown.edu/studio/item/bdr:11308/.

Council of Science Editors:

Kim C. Initial Boundary Value Problem of the Boltzmann Equation. [Doctoral Dissertation]. Brown University; 2011. Available from: https://repository.library.brown.edu/studio/item/bdr:11308/


Brno University of Technology

17. Kráčmar, Jiří. Diferenciální rovnice se zpožděním: Delay differential equations.

Degree: 2018, Brno University of Technology

 Bachelor thesis focuses on the issue of differential equations with delay, which, unlike ordinary differential equations, contain in the unknown function argument the function of… (more)

Subjects/Keywords: Funkcionální diferenciální rovnice; diferenciální rovnice se zpožděním; metoda kroků; růst populací; logistická rovnice.; Functional differential equations; differential equations with delay; method of steps; growth of populations; logistic equation.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kráčmar, J. (2018). Diferenciální rovnice se zpožděním: Delay differential equations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/18931

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kráčmar, Jiří. “Diferenciální rovnice se zpožděním: Delay differential equations.” 2018. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/18931.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kráčmar, Jiří. “Diferenciální rovnice se zpožděním: Delay differential equations.” 2018. Web. 01 Oct 2020.

Vancouver:

Kráčmar J. Diferenciální rovnice se zpožděním: Delay differential equations. [Internet] [Thesis]. Brno University of Technology; 2018. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/18931.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kráčmar J. Diferenciální rovnice se zpožděním: Delay differential equations. [Thesis]. Brno University of Technology; 2018. Available from: http://hdl.handle.net/11012/18931

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Rochester

18. Kiria-Kaiserberg, Vyacheslav. Explosion properties of stochastic differential delay equations without drift.

Degree: PhD, 2016, University of Rochester

 In this thesis we investigate the conditions which lead to explosion of Stochastic Differential Delay Equations (SDDE). SDDE's are stochastic differential equations with delay in… (more)

Subjects/Keywords: Delay equation; explosion time

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kiria-Kaiserberg, V. (2016). Explosion properties of stochastic differential delay equations without drift. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/31482

Chicago Manual of Style (16th Edition):

Kiria-Kaiserberg, Vyacheslav. “Explosion properties of stochastic differential delay equations without drift.” 2016. Doctoral Dissertation, University of Rochester. Accessed October 01, 2020. http://hdl.handle.net/1802/31482.

MLA Handbook (7th Edition):

Kiria-Kaiserberg, Vyacheslav. “Explosion properties of stochastic differential delay equations without drift.” 2016. Web. 01 Oct 2020.

Vancouver:

Kiria-Kaiserberg V. Explosion properties of stochastic differential delay equations without drift. [Internet] [Doctoral dissertation]. University of Rochester; 2016. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1802/31482.

Council of Science Editors:

Kiria-Kaiserberg V. Explosion properties of stochastic differential delay equations without drift. [Doctoral Dissertation]. University of Rochester; 2016. Available from: http://hdl.handle.net/1802/31482


University of Arizona

19. McDaniel, Austin James. The Effects of Time Delay on Noisy Systems .

Degree: 2015, University of Arizona

 We consider a general stochastic differential delay equation (SDDE) with multiplicative colored noise. We study the limit as the time delays and the correlation times… (more)

Subjects/Keywords: stochastic differential equations; time delay; Applied Mathematics; stochastic differential delay equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McDaniel, A. J. (2015). The Effects of Time Delay on Noisy Systems . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/556867

Chicago Manual of Style (16th Edition):

McDaniel, Austin James. “The Effects of Time Delay on Noisy Systems .” 2015. Doctoral Dissertation, University of Arizona. Accessed October 01, 2020. http://hdl.handle.net/10150/556867.

MLA Handbook (7th Edition):

McDaniel, Austin James. “The Effects of Time Delay on Noisy Systems .” 2015. Web. 01 Oct 2020.

Vancouver:

McDaniel AJ. The Effects of Time Delay on Noisy Systems . [Internet] [Doctoral dissertation]. University of Arizona; 2015. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/10150/556867.

Council of Science Editors:

McDaniel AJ. The Effects of Time Delay on Noisy Systems . [Doctoral Dissertation]. University of Arizona; 2015. Available from: http://hdl.handle.net/10150/556867


Brno University of Technology

20. Béreš, Lukáš. Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations.

Degree: 2019, Brno University of Technology

 The master's thesis is focused on the nonlinear differential equations. It contains theorems important to determine the behaviour of the nonlinear system only by study… (more)

Subjects/Keywords: Nelineární diferenciální rovnice; kyvadlo; diferenciální rovnice se zpožděním; portálový jeřáb; oscilace lineární rovnice s nekonstantním zpožděním.; Nonlinear differential equations; pendulum; delay differential equations; gantry crane; oscillation of the linear equation with non-constant delay.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Béreš, L. (2019). Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/66558

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Béreš, Lukáš. “Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/66558.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Béreš, Lukáš. “Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations.” 2019. Web. 01 Oct 2020.

Vancouver:

Béreš L. Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/66558.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Béreš L. Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/66558

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

21. Koné, Mamadou Ibrahima. Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space.

Degree: Docteur es, Mathématiques appliquées, 2016, Paris 1

L'objectif de cette thèse est de contribuer à l'optimisation de problèmes dynamiques en présence de retard. Le point de vue qui nous intéressera est celui… (more)

Subjects/Keywords: Résolvante; Équation différentielle fonctionnelle linéarisée; Contrôle optimal; Principe de Pontryagin; Équation différentielle fonctionnelle; Calcul des variations; Condition d'Euler-Lagrange; Théorème de représentation de Riesz; Resolvent; Linear delay functional differential equation; Optimal control; Pontryagin principle; Functional differential equation; Calculus of variation; Euler-Lagrange condition; Riesz representation theorem; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Koné, M. I. (2016). Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space. (Doctoral Dissertation). Paris 1. Retrieved from http://www.theses.fr/2016PA01E063

Chicago Manual of Style (16th Edition):

Koné, Mamadou Ibrahima. “Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space.” 2016. Doctoral Dissertation, Paris 1. Accessed October 01, 2020. http://www.theses.fr/2016PA01E063.

MLA Handbook (7th Edition):

Koné, Mamadou Ibrahima. “Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space.” 2016. Web. 01 Oct 2020.

Vancouver:

Koné MI. Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space. [Internet] [Doctoral dissertation]. Paris 1; 2016. [cited 2020 Oct 01]. Available from: http://www.theses.fr/2016PA01E063.

Council of Science Editors:

Koné MI. Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space. [Doctoral Dissertation]. Paris 1; 2016. Available from: http://www.theses.fr/2016PA01E063

22. Rossi, Marcelo. Modelo matemático da resposta imune à infecção pelo vírus HIV-1.

Degree: PhD, Biotecnologia, 2008, University of São Paulo

Avanços recentes nos conhecimentos sobre a infecção viral e AIDS tem levado pacientes soropositivos a uma melhor qualidade de vida. A determinação de quais populações… (more)

Subjects/Keywords: Delay differential equation; Epidemiologia; Epidemiology; Equação diferencial com retardamento; HIV infection; Immune system; Infecção por HIV; Mathematical modeling; Modelagem matemática; Sistema imune

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rossi, M. (2008). Modelo matemático da resposta imune à infecção pelo vírus HIV-1. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/ ;

Chicago Manual of Style (16th Edition):

Rossi, Marcelo. “Modelo matemático da resposta imune à infecção pelo vírus HIV-1.” 2008. Doctoral Dissertation, University of São Paulo. Accessed October 01, 2020. http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/ ;.

MLA Handbook (7th Edition):

Rossi, Marcelo. “Modelo matemático da resposta imune à infecção pelo vírus HIV-1.” 2008. Web. 01 Oct 2020.

Vancouver:

Rossi M. Modelo matemático da resposta imune à infecção pelo vírus HIV-1. [Internet] [Doctoral dissertation]. University of São Paulo; 2008. [cited 2020 Oct 01]. Available from: http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/ ;.

Council of Science Editors:

Rossi M. Modelo matemático da resposta imune à infecção pelo vírus HIV-1. [Doctoral Dissertation]. University of São Paulo; 2008. Available from: http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/ ;


Cornell University

23. Morrison, Tina Marie. THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION.

Degree: 2006, Cornell University

 Parametric excitation is epitomized by the Mathieu equation, x''+(d + e cos t)x = 0, which involves the characteristic feature of 2:1 resonance. This thesis… (more)

Subjects/Keywords: Parametric Excitation; Delay Differential Equation; Hopf Bifurcation; Quasiperiodic Mathieu; Bifurcations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Morrison, T. M. (2006). THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION. (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/2952

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Morrison, Tina Marie. “THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION.” 2006. Thesis, Cornell University. Accessed October 01, 2020. http://hdl.handle.net/1813/2952.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Morrison, Tina Marie. “THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION.” 2006. Web. 01 Oct 2020.

Vancouver:

Morrison TM. THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION. [Internet] [Thesis]. Cornell University; 2006. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1813/2952.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Morrison TM. THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION. [Thesis]. Cornell University; 2006. Available from: http://hdl.handle.net/1813/2952

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

24. Dražková, Jana. Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations.

Degree: 2019, Brno University of Technology

 The doctoral thesis discusses the asymptotic stability of delay differential equations and their discretizations. The linear delay differential equations with constant as well as infinite… (more)

Subjects/Keywords: neutrální zpožděná diferenciální rovnice; $\Theta$-metoda; asymptotická stabilita; $\tau$-stabilita; konstantní zpoždění; neohraničené zpoždění; neutral delay differential equation; $\Theta$-method; asymptotic stability; $\tau$-stability; constant lag; infinite lag

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dražková, J. (2019). Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/36294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dražková, Jana. “Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/36294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dražková, Jana. “Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations.” 2019. Web. 01 Oct 2020.

Vancouver:

Dražková J. Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/36294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dražková J. Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/36294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

25. Melissa Davidson. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.

Degree: Mathematics, 2013, University of Notre Dame

  It is shown that the data-to-solution map for the generalized reduced Ostrovsky (gRO) equation is not uniformly continuous on bounded sets in Sobolev spaces… (more)

Subjects/Keywords: soliton; wave equation; partial differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Davidson, M. (2013). Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/9p29086334c

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.” 2013. Thesis, University of Notre Dame. Accessed October 01, 2020. https://curate.nd.edu/show/9p29086334c.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.” 2013. Web. 01 Oct 2020.

Vancouver:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. [Internet] [Thesis]. University of Notre Dame; 2013. [cited 2020 Oct 01]. Available from: https://curate.nd.edu/show/9p29086334c.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. [Thesis]. University of Notre Dame; 2013. Available from: https://curate.nd.edu/show/9p29086334c

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

26. Van Leeuwen, J.P.H. (author). A nonlinear Schrödinger equation in L² with multiplicative white noise.

Degree: 2011, Delft University of Technology

In this thesis existence and uniqueness of the solution of a nonlinear Schrödinger equation in L² with multiplicative white noise is proven under some assumptions. Furthermore, pathwise L²-norm conservation of the solution is studied.

Analysis

Applied mathematics

Electrical Engineering, Mathematics and Computer Science

Advisors/Committee Members: Veraar, M.C. (mentor).

Subjects/Keywords: stochastic partial differential equation; nonlinear Schrödinger equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Van Leeuwen, J. P. H. (. (2011). A nonlinear Schrödinger equation in L² with multiplicative white noise. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be

Chicago Manual of Style (16th Edition):

Van Leeuwen, J P H (author). “A nonlinear Schrödinger equation in L² with multiplicative white noise.” 2011. Masters Thesis, Delft University of Technology. Accessed October 01, 2020. http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be.

MLA Handbook (7th Edition):

Van Leeuwen, J P H (author). “A nonlinear Schrödinger equation in L² with multiplicative white noise.” 2011. Web. 01 Oct 2020.

Vancouver:

Van Leeuwen JPH(. A nonlinear Schrödinger equation in L² with multiplicative white noise. [Internet] [Masters thesis]. Delft University of Technology; 2011. [cited 2020 Oct 01]. Available from: http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be.

Council of Science Editors:

Van Leeuwen JPH(. A nonlinear Schrödinger equation in L² with multiplicative white noise. [Masters Thesis]. Delft University of Technology; 2011. Available from: http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be


Queens University

27. Rozins, Carly. An impulsive differential equation model for Marek's disease .

Degree: Mathematics and Statistics, 2016, Queens University

 Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process.… (more)

Subjects/Keywords: poultry ; SIR ; model ; differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rozins, C. (2016). An impulsive differential equation model for Marek's disease . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/14944

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rozins, Carly. “An impulsive differential equation model for Marek's disease .” 2016. Thesis, Queens University. Accessed October 01, 2020. http://hdl.handle.net/1974/14944.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rozins, Carly. “An impulsive differential equation model for Marek's disease .” 2016. Web. 01 Oct 2020.

Vancouver:

Rozins C. An impulsive differential equation model for Marek's disease . [Internet] [Thesis]. Queens University; 2016. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1974/14944.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rozins C. An impulsive differential equation model for Marek's disease . [Thesis]. Queens University; 2016. Available from: http://hdl.handle.net/1974/14944

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kwame Nkrumah University of Science and Technology

28. Allotey, Jacobs Bernard. Modelling an Equation for Detecting Diabetes.

Degree: 2012, Kwame Nkrumah University of Science and Technology

Diabetes is a syndrome of disordered metabolism, usually due to a combination of hereditary and environmental causes, resulting in abnormally high blood sugar levels. Various… (more)

Subjects/Keywords: Differential equation; Diabetes; Glucose; Insulin

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Allotey, J. B. (2012). Modelling an Equation for Detecting Diabetes. (Thesis). Kwame Nkrumah University of Science and Technology. Retrieved from http://dspace.knust.edu.gh:8080/jspui/handle/123456789/4523

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Allotey, Jacobs Bernard. “Modelling an Equation for Detecting Diabetes.” 2012. Thesis, Kwame Nkrumah University of Science and Technology. Accessed October 01, 2020. http://dspace.knust.edu.gh:8080/jspui/handle/123456789/4523.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Allotey, Jacobs Bernard. “Modelling an Equation for Detecting Diabetes.” 2012. Web. 01 Oct 2020.

Vancouver:

Allotey JB. Modelling an Equation for Detecting Diabetes. [Internet] [Thesis]. Kwame Nkrumah University of Science and Technology; 2012. [cited 2020 Oct 01]. Available from: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/4523.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Allotey JB. Modelling an Equation for Detecting Diabetes. [Thesis]. Kwame Nkrumah University of Science and Technology; 2012. Available from: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/4523

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

29. Bou Saba, David. Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension.

Degree: Docteur es, Automatique, 2018, Lyon

Les réseaux de lois de bilan sont définis par l'interconnexion, via des conditions aux bords, de modules élémentaires individuellement caractérisés par la conservation de certaines… (more)

Subjects/Keywords: Automatique; Commande automatique; Systèmes linéaires; Equation aux dérivées partielles; Analyse de stabilité; Equations aux différences; Systèmes à retards; Automatics; Automatic control; Linear system; Partial differential equation; Stability analysis; Difference equation; Delay systems; 629.832 072

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bou Saba, D. (2018). Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2018LYSEI084

Chicago Manual of Style (16th Edition):

Bou Saba, David. “Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension.” 2018. Doctoral Dissertation, Lyon. Accessed October 01, 2020. http://www.theses.fr/2018LYSEI084.

MLA Handbook (7th Edition):

Bou Saba, David. “Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension.” 2018. Web. 01 Oct 2020.

Vancouver:

Bou Saba D. Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension. [Internet] [Doctoral dissertation]. Lyon; 2018. [cited 2020 Oct 01]. Available from: http://www.theses.fr/2018LYSEI084.

Council of Science Editors:

Bou Saba D. Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension. [Doctoral Dissertation]. Lyon; 2018. Available from: http://www.theses.fr/2018LYSEI084


Brno University of Technology

30. Dvořáková, Stanislava. The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations.

Degree: 2019, Brno University of Technology

 This thesis formulates the asymptotic estimates of solutions of the so-called sublinear and superlinear differential equations with a delayed argument. These estimates are given in… (more)

Subjects/Keywords: Nelineární diferenciální rovnice se zpožděním; funkcionální rovnice a nerovnice; diferenční rovnice; asymptotické chování; q-metoda; stabilita; Nonlinear delay differential equation; functional equation and inequality; difference equation; asymptotic behavior; the q-method; stability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dvořáková, S. (2019). The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/6207

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dvořáková, Stanislava. “The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/6207.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dvořáková, Stanislava. “The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations.” 2019. Web. 01 Oct 2020.

Vancouver:

Dvořáková S. The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/6207.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dvořáková S. The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/6207

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5] … [464]

.