Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:( delay differential equation)`

.
Showing records 1 – 30 of
13902 total matches.

◁ [1] [2] [3] [4] [5] … [464] ▶

Search Limiters

Dates

- 2016 – 2020 (4517)
- 2011 – 2015 (5084)
- 2006 – 2010 (2740)
- 2001 – 2005 (957)
- 1996 – 2000 (351)
- 1991 – 1995 (225)
- 1986 – 1990 (182)
- 1981 – 1985 (110)
- 1976 – 1980 (92)
- 1971 – 1975 (106)

Universities

- Brno University of Technology (802)
- NSYSU (262)
- Texas A&M University (257)
- University of São Paulo (238)
- Virginia Tech (235)
- University of Florida (229)
- ETH Zürich (201)
- University of Illinois – Urbana-Champaign (199)
- Universidade Estadual de Campinas (187)
- Georgia Tech (175)
- The Ohio State University (174)
- University of Waterloo (160)
- National University of Singapore (157)
- University of Oxford (144)
- Delft University of Technology (143)

Department

- Mathematics (642)
- Electrical Engineering (249)
- Psychology (233)
- Electrical and Computer Engineering (209)
- Mathématiques (191)
- Mechanical Engineering (188)
- Applied Mathematics (151)
- Physics (132)
- Civil Engineering (95)
- Department of Mathematics (88)
- Computer Science (85)
- Mathématiques appliquées (81)
- Faculty of Engineering (69)
- Aerospace Engineering (60)
- Chemical Engineering (56)

Degrees

- PhD (3413)
- MS (1047)
- Docteur es (1002)
- Master (367)
- MA (159)
- Mestrado (115)
- MS(M.S.) (36)
- MSc Engg (25)
- MSc (24)
- MAin Mathematics (19)
- Thesis (D.Clin.Psy.) (17)
- MSin Mathematics (M.S.) (16)
- 博士(工学) (16)
- MSin Engineering (11)
- Dissertation (10)

Levels

- doctoral (5566)
- masters (2097)
- thesis (231)
- doctor of philosophy ph.d. (23)
- 1 (17)
- dissertation (11)
- doctor of philosophy (ph.d.) (11)

Languages

Country

- US (5541)
- France (1002)
- Brazil (934)
- Canada (916)
- Czech Republic (808)
- UK (663)
- Australia (459)
- Sweden (424)
- Greece (377)
- Netherlands (300)
- Taiwan (262)
- South Africa (261)
- India (229)
- Switzerland (202)
- Singapore (157)

▼ Search Limiters

Cornell University

1.
Heckman, Christoffer.
Asymptotic And Numerical Analysis Of *Delay*-Coupled Microbubble Oscillators.

Degree: PhD, Theoretical and Applied Mechanics, 2012, Cornell University

URL: http://hdl.handle.net/1813/31000

► Two vibrating bubbles submerged in a fluid influence each others' dynamics via sound waves in the fluid. Due to finite sound speed, there is a…
(more)

Subjects/Keywords: microbubble; differential delay equation; perturbation methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Heckman, C. (2012). Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/31000

Chicago Manual of Style (16^{th} Edition):

Heckman, Christoffer. “Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators.” 2012. Doctoral Dissertation, Cornell University. Accessed October 01, 2020. http://hdl.handle.net/1813/31000.

MLA Handbook (7^{th} Edition):

Heckman, Christoffer. “Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators.” 2012. Web. 01 Oct 2020.

Vancouver:

Heckman C. Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators. [Internet] [Doctoral dissertation]. Cornell University; 2012. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1813/31000.

Council of Science Editors:

Heckman C. Asymptotic And Numerical Analysis Of Delay-Coupled Microbubble Oscillators. [Doctoral Dissertation]. Cornell University; 2012. Available from: http://hdl.handle.net/1813/31000

2.
Kosovalic, Nemanja.
Algebraic-*Delay* *Differential* Systems: Co - Extendable Banach Manifolds and Linearization.

Degree: PhD, Mathematics & Statistics, 2015, York University

URL: http://hdl.handle.net/10315/28208

► Consider a population of individuals occupying some habitat, and assume that the population is structured by age. Suppose that there are two distinct life stages,…
(more)

Subjects/Keywords: Applied mathematics; Functional differential equation; State-dependent delay; Nonlinear analysis; Age structured population

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kosovalic, N. (2015). Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization. (Doctoral Dissertation). York University. Retrieved from http://hdl.handle.net/10315/28208

Chicago Manual of Style (16^{th} Edition):

Kosovalic, Nemanja. “Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization.” 2015. Doctoral Dissertation, York University. Accessed October 01, 2020. http://hdl.handle.net/10315/28208.

MLA Handbook (7^{th} Edition):

Kosovalic, Nemanja. “Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization.” 2015. Web. 01 Oct 2020.

Vancouver:

Kosovalic N. Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization. [Internet] [Doctoral dissertation]. York University; 2015. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/10315/28208.

Council of Science Editors:

Kosovalic N. Algebraic-Delay Differential Systems: Co - Extendable Banach Manifolds and Linearization. [Doctoral Dissertation]. York University; 2015. Available from: http://hdl.handle.net/10315/28208

University of Iowa

3.
Zhou, Ziqian.
Statistical inference of distributed *delay* *differential* equations.

Degree: PhD, Statistics, 2016, University of Iowa

URL: https://ir.uiowa.edu/etd/2173

► In this study, we aim to develop new likelihood based method for estimating parameters of ordinary *differential* equations (ODEs) / *delay* *differential* equations (DDEs)…
(more)

Subjects/Keywords: Delay Differential Equation; Epidemiology; Generalized Profiling; SPARSE REGULARIZATION; Time Varying Parameters; Statistics and Probability

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhou, Z. (2016). Statistical inference of distributed delay differential equations. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/2173

Chicago Manual of Style (16^{th} Edition):

Zhou, Ziqian. “Statistical inference of distributed delay differential equations.” 2016. Doctoral Dissertation, University of Iowa. Accessed October 01, 2020. https://ir.uiowa.edu/etd/2173.

MLA Handbook (7^{th} Edition):

Zhou, Ziqian. “Statistical inference of distributed delay differential equations.” 2016. Web. 01 Oct 2020.

Vancouver:

Zhou Z. Statistical inference of distributed delay differential equations. [Internet] [Doctoral dissertation]. University of Iowa; 2016. [cited 2020 Oct 01]. Available from: https://ir.uiowa.edu/etd/2173.

Council of Science Editors:

Zhou Z. Statistical inference of distributed delay differential equations. [Doctoral Dissertation]. University of Iowa; 2016. Available from: https://ir.uiowa.edu/etd/2173

Southern Illinois University

4.
Gallage, Roshini Samanthi.
Approximation Of Continuously Distributed *Delay* *Differential* Equations.

Degree: MS, Mathematics, 2017, Southern Illinois University

URL: https://opensiuc.lib.siu.edu/theses/2196

► We establish a theorem on the approximation of the solutions of *delay* *differential* equations with continuously distributed *delay* with solutions of *delay* *differential* equations…
(more)

Subjects/Keywords: continuous delays; DDE; Delay Differential Equation; discrete delays; predator-prey systems; Trajectories of DDE

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gallage, R. S. (2017). Approximation Of Continuously Distributed Delay Differential Equations. (Masters Thesis). Southern Illinois University. Retrieved from https://opensiuc.lib.siu.edu/theses/2196

Chicago Manual of Style (16^{th} Edition):

Gallage, Roshini Samanthi. “Approximation Of Continuously Distributed Delay Differential Equations.” 2017. Masters Thesis, Southern Illinois University. Accessed October 01, 2020. https://opensiuc.lib.siu.edu/theses/2196.

MLA Handbook (7^{th} Edition):

Gallage, Roshini Samanthi. “Approximation Of Continuously Distributed Delay Differential Equations.” 2017. Web. 01 Oct 2020.

Vancouver:

Gallage RS. Approximation Of Continuously Distributed Delay Differential Equations. [Internet] [Masters thesis]. Southern Illinois University; 2017. [cited 2020 Oct 01]. Available from: https://opensiuc.lib.siu.edu/theses/2196.

Council of Science Editors:

Gallage RS. Approximation Of Continuously Distributed Delay Differential Equations. [Masters Thesis]. Southern Illinois University; 2017. Available from: https://opensiuc.lib.siu.edu/theses/2196

University of Maryland

5. Dao, Hien Thi Le. Complex dynamics of a microwave time-delayed feedback loop.

Degree: Chemical Physics, 2013, University of Maryland

URL: http://hdl.handle.net/1903/15663

► The *subject* of this thesis is deterministic behaviors generated from a microwave time-delayed feedback loop. Time-delayed feedback systems are especially interesting because of the rich…
(more)

Subjects/Keywords: Physics; Chaos; Delay differential equation; Deterministic Brownian motion; FPGA; Microwave chaos; Time-delayed

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dao, H. T. L. (2013). Complex dynamics of a microwave time-delayed feedback loop. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/15663

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dao, Hien Thi Le. “Complex dynamics of a microwave time-delayed feedback loop.” 2013. Thesis, University of Maryland. Accessed October 01, 2020. http://hdl.handle.net/1903/15663.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dao, Hien Thi Le. “Complex dynamics of a microwave time-delayed feedback loop.” 2013. Web. 01 Oct 2020.

Vancouver:

Dao HTL. Complex dynamics of a microwave time-delayed feedback loop. [Internet] [Thesis]. University of Maryland; 2013. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1903/15663.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dao HTL. Complex dynamics of a microwave time-delayed feedback loop. [Thesis]. University of Maryland; 2013. Available from: http://hdl.handle.net/1903/15663

Not specified: Masters Thesis or Doctoral Dissertation

Texas A&M University

6.
Zhao, Siming.
Center Manifold Analysis of Delayed Lienard *Equation* and Its Applications.

Degree: MS, Aerospace Engineering, 2010, Texas A&M University

URL: http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7000

► Lienard Equations serve as the elegant models for oscillating circuits. Motivated by this fact, this thesis addresses the stability property of a class of delayed…
(more)

Subjects/Keywords: center manifold; Lienard equation; delay differential equation; Hopf bifurcation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhao, S. (2010). Center Manifold Analysis of Delayed Lienard Equation and Its Applications. (Masters Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7000

Chicago Manual of Style (16^{th} Edition):

Zhao, Siming. “Center Manifold Analysis of Delayed Lienard Equation and Its Applications.” 2010. Masters Thesis, Texas A&M University. Accessed October 01, 2020. http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7000.

MLA Handbook (7^{th} Edition):

Zhao, Siming. “Center Manifold Analysis of Delayed Lienard Equation and Its Applications.” 2010. Web. 01 Oct 2020.

Vancouver:

Zhao S. Center Manifold Analysis of Delayed Lienard Equation and Its Applications. [Internet] [Masters thesis]. Texas A&M University; 2010. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7000.

Council of Science Editors:

Zhao S. Center Manifold Analysis of Delayed Lienard Equation and Its Applications. [Masters Thesis]. Texas A&M University; 2010. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7000

Brno University of Technology

7.
Jánský, Jiří.
* Delay* Difference Equations and Their Applications:

Degree: 2019, Brno University of Technology

URL: http://hdl.handle.net/11012/15628

► This thesis discusses the qualitative properties of some *delay* difference equations. These equations originate from the Θ-method discretizations of the *differential* equations with a delayed…
(more)

Subjects/Keywords: Diferenční rovnice se zpožděním; diferenciální rovnice se zpožděním; asymptotické chování; stabilita; $\Theta$-metoda.; Delay difference equation; delay differential equation; asymptotic behaviour; stability; the $\Theta$-method.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jánský, J. (2019). Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/15628

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Jánský, Jiří. “Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/15628.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Jánský, Jiří. “Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications.” 2019. Web. 01 Oct 2020.

Vancouver:

Jánský J. Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/15628.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jánský J. Delay Difference Equations and Their Applications: Delay Difference Equations and Their Applications. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/15628

Not specified: Masters Thesis or Doctoral Dissertation

University of Michigan

8.
Forde, Jonathan Erwin.
*Delay**differential* *equation* models in mathematical biology.

Degree: PhD, Pure Sciences, 2005, University of Michigan

URL: http://hdl.handle.net/2027.42/125360

► In this dissertation, *delay* *differential* *equation* models from mathematical biology are studied, focusing on population ecology. In order to even begin a study of such…
(more)

Subjects/Keywords: Biology; Delay Differential Equation; Delay Differential Equations; Mathematical; Models; Sturm Sequences

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Forde, J. E. (2005). Delay differential equation models in mathematical biology. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125360

Chicago Manual of Style (16^{th} Edition):

Forde, Jonathan Erwin. “Delay differential equation models in mathematical biology.” 2005. Doctoral Dissertation, University of Michigan. Accessed October 01, 2020. http://hdl.handle.net/2027.42/125360.

MLA Handbook (7^{th} Edition):

Forde, Jonathan Erwin. “Delay differential equation models in mathematical biology.” 2005. Web. 01 Oct 2020.

Vancouver:

Forde JE. Delay differential equation models in mathematical biology. [Internet] [Doctoral dissertation]. University of Michigan; 2005. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/2027.42/125360.

Council of Science Editors:

Forde JE. Delay differential equation models in mathematical biology. [Doctoral Dissertation]. University of Michigan; 2005. Available from: http://hdl.handle.net/2027.42/125360

Rutgers University

9.
Jaquette, Jonathan Caleb, 1988-.
Counting and discounting slowly oscillating periodic solutions to Wright's * equation*.

Degree: PhD, Mathematics, 2018, Rutgers University

URL: https://rucore.libraries.rutgers.edu/rutgers-lib/57618/

►

A classical example of a nonlinear *delay* *differential* equations is Wright's *equation*: y'(t) = −αy(t − 1)[1 + y(t)],, considering α > 0 and y(t)…
(more)

Subjects/Keywords: Delay differential equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jaquette, Jonathan Caleb, 1. (2018). Counting and discounting slowly oscillating periodic solutions to Wright's equation. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/57618/

Chicago Manual of Style (16^{th} Edition):

Jaquette, Jonathan Caleb, 1988-. “Counting and discounting slowly oscillating periodic solutions to Wright's equation.” 2018. Doctoral Dissertation, Rutgers University. Accessed October 01, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/57618/.

MLA Handbook (7^{th} Edition):

Jaquette, Jonathan Caleb, 1988-. “Counting and discounting slowly oscillating periodic solutions to Wright's equation.” 2018. Web. 01 Oct 2020.

Vancouver:

Jaquette, Jonathan Caleb 1. Counting and discounting slowly oscillating periodic solutions to Wright's equation. [Internet] [Doctoral dissertation]. Rutgers University; 2018. [cited 2020 Oct 01]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/57618/.

Council of Science Editors:

Jaquette, Jonathan Caleb 1. Counting and discounting slowly oscillating periodic solutions to Wright's equation. [Doctoral Dissertation]. Rutgers University; 2018. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/57618/

North Carolina State University

10. Joyner, Sarah Lynn. Dynamic Models for Insect Mortality Due to Exposure to Insecticides.

Degree: MS, Computational Mathematics, 2008, North Carolina State University

URL: http://www.lib.ncsu.edu/resolver/1840.16/559

Subjects/Keywords: population models; time-dependent parameters; delay differential equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Joyner, S. L. (2008). Dynamic Models for Insect Mortality Due to Exposure to Insecticides. (Thesis). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/559

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Joyner, Sarah Lynn. “Dynamic Models for Insect Mortality Due to Exposure to Insecticides.” 2008. Thesis, North Carolina State University. Accessed October 01, 2020. http://www.lib.ncsu.edu/resolver/1840.16/559.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Joyner, Sarah Lynn. “Dynamic Models for Insect Mortality Due to Exposure to Insecticides.” 2008. Web. 01 Oct 2020.

Vancouver:

Joyner SL. Dynamic Models for Insect Mortality Due to Exposure to Insecticides. [Internet] [Thesis]. North Carolina State University; 2008. [cited 2020 Oct 01]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/559.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Joyner SL. Dynamic Models for Insect Mortality Due to Exposure to Insecticides. [Thesis]. North Carolina State University; 2008. Available from: http://www.lib.ncsu.edu/resolver/1840.16/559

Not specified: Masters Thesis or Doctoral Dissertation

Colorado State University

11. Zhang, Chuan. Storing cycles in Hopfield-type neural networks.

Degree: PhD, Mathematics, 2014, Colorado State University

URL: http://hdl.handle.net/10217/83828

► The storage of pattern sequences is one of the most important tasks in both biological and artificial intelligence systems. Clarifying the underlying mathematical principles for…
(more)

Subjects/Keywords: cyclic patterns; delay differential equation; Hopfield-type neural networks; nonlinear dynamics; pseudoinverse learning rule; storage and retrieval

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhang, C. (2014). Storing cycles in Hopfield-type neural networks. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/83828

Chicago Manual of Style (16^{th} Edition):

Zhang, Chuan. “Storing cycles in Hopfield-type neural networks.” 2014. Doctoral Dissertation, Colorado State University. Accessed October 01, 2020. http://hdl.handle.net/10217/83828.

MLA Handbook (7^{th} Edition):

Zhang, Chuan. “Storing cycles in Hopfield-type neural networks.” 2014. Web. 01 Oct 2020.

Vancouver:

Zhang C. Storing cycles in Hopfield-type neural networks. [Internet] [Doctoral dissertation]. Colorado State University; 2014. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/10217/83828.

Council of Science Editors:

Zhang C. Storing cycles in Hopfield-type neural networks. [Doctoral Dissertation]. Colorado State University; 2014. Available from: http://hdl.handle.net/10217/83828

University of Western Ontario

12. Bastow, Nicole. Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay.

Degree: 2016, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/3677

► The aim of this thesis is to model the impact of climate change on polar bear populations. The first model is a discrete matrix model…
(more)

Subjects/Keywords: Matrix Population; Delay Differential Equation; Time-dependent; Polar Bears; Climate Change; Western Hudson Bay; Dynamic Systems; Other Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bastow, N. (2016). Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3677

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bastow, Nicole. “Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay.” 2016. Thesis, University of Western Ontario. Accessed October 01, 2020. https://ir.lib.uwo.ca/etd/3677.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bastow, Nicole. “Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay.” 2016. Web. 01 Oct 2020.

Vancouver:

Bastow N. Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay. [Internet] [Thesis]. University of Western Ontario; 2016. [cited 2020 Oct 01]. Available from: https://ir.lib.uwo.ca/etd/3677.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bastow N. Modelling the Impact of Climate Change on the Polar Bear Population in Western Hudson Bay. [Thesis]. University of Western Ontario; 2016. Available from: https://ir.lib.uwo.ca/etd/3677

Not specified: Masters Thesis or Doctoral Dissertation

Brno University of Technology

13.
Obrátil, Štěpán.
Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for *delay* *differential* equations.

Degree: 2019, Brno University of Technology

URL: http://hdl.handle.net/11012/175421

► The thesis deals with numerical analysis of *delay* *differential* equations. Particularly, the -method is applied to the pantograph *equation* considering equidistant and quasi-geometric mesh. Qualitative…
(more)

Subjects/Keywords: zpožděné diferenciální rovnice; rovnice pantografu; -metoda; stabilita numerických metod; delay differential equations; pantograph equation; -method; stability of numerical methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Obrátil, . (2019). Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/175421

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Obrátil, Štěpán. “Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/175421.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Obrátil, Štěpán. “Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations.” 2019. Web. 01 Oct 2020.

Vancouver:

Obrátil . Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/175421.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Obrátil . Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem: Stability analysis of numerical methods for delay differential equations. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/175421

Not specified: Masters Thesis or Doctoral Dissertation

14.
Erzgräber, H.
Dynamics of *delay*-coupled semiconductor laser systems.

Degree: Faculty of Earth and Life Sciences, 2006, NARCIS

URL: https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff ; urn:nbn:nl:ui:31-1871/10553 ; 71ba6d54-45d3-45d3-a90d-0f943eec35ff ; 1871/10553 ; urn:nbn:nl:ui:31-1871/10553 ; https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff

Subjects/Keywords: bifurcation; continuation; delay differential equation; nonlinear dynamics; semiconductor laser

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Erzgräber, H. (2006). Dynamics of delay-coupled semiconductor laser systems. (Doctoral Dissertation). NARCIS. Retrieved from https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff ; urn:nbn:nl:ui:31-1871/10553 ; 71ba6d54-45d3-45d3-a90d-0f943eec35ff ; 1871/10553 ; urn:nbn:nl:ui:31-1871/10553 ; https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff

Chicago Manual of Style (16^{th} Edition):

Erzgräber, H. “Dynamics of delay-coupled semiconductor laser systems.” 2006. Doctoral Dissertation, NARCIS. Accessed October 01, 2020. https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff ; urn:nbn:nl:ui:31-1871/10553 ; 71ba6d54-45d3-45d3-a90d-0f943eec35ff ; 1871/10553 ; urn:nbn:nl:ui:31-1871/10553 ; https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff.

MLA Handbook (7^{th} Edition):

Erzgräber, H. “Dynamics of delay-coupled semiconductor laser systems.” 2006. Web. 01 Oct 2020.

Vancouver:

Erzgräber H. Dynamics of delay-coupled semiconductor laser systems. [Internet] [Doctoral dissertation]. NARCIS; 2006. [cited 2020 Oct 01]. Available from: https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff ; urn:nbn:nl:ui:31-1871/10553 ; 71ba6d54-45d3-45d3-a90d-0f943eec35ff ; 1871/10553 ; urn:nbn:nl:ui:31-1871/10553 ; https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff.

Council of Science Editors:

Erzgräber H. Dynamics of delay-coupled semiconductor laser systems. [Doctoral Dissertation]. NARCIS; 2006. Available from: https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff ; urn:nbn:nl:ui:31-1871/10553 ; 71ba6d54-45d3-45d3-a90d-0f943eec35ff ; 1871/10553 ; urn:nbn:nl:ui:31-1871/10553 ; https://research.vu.nl/en/publications/71ba6d54-45d3-45d3-a90d-0f943eec35ff

University of Guelph

15.
Ghwila, Mona.
Mathematical Analysis of a *Delay* System as an Equivalent Model for a Size-Structured Fish Population.

Degree: MS, Department of Mathematics and Statistics, 2017, University of Guelph

URL: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10420

► This thesis is centered on a study of a *delay* system as an equivalent model of a size-structured fish population model. The *delay* system consists…
(more)

Subjects/Keywords: Delay-Differential Equations; Size-Structured Population Model; Stage-Structured Population Model; Harvesting Strategies; juveniles and adults; Equilibrium Solution; Characteristic Equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ghwila, M. (2017). Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population. (Masters Thesis). University of Guelph. Retrieved from https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10420

Chicago Manual of Style (16^{th} Edition):

Ghwila, Mona. “Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population.” 2017. Masters Thesis, University of Guelph. Accessed October 01, 2020. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10420.

MLA Handbook (7^{th} Edition):

Ghwila, Mona. “Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population.” 2017. Web. 01 Oct 2020.

Vancouver:

Ghwila M. Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population. [Internet] [Masters thesis]. University of Guelph; 2017. [cited 2020 Oct 01]. Available from: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10420.

Council of Science Editors:

Ghwila M. Mathematical Analysis of a Delay System as an Equivalent Model for a Size-Structured Fish Population. [Masters Thesis]. University of Guelph; 2017. Available from: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10420

16.
Kim, Chanwoo.
Initial Boundary Value Problem of the Boltzmann
* Equation*.

Degree: PhD, Mathematics, 2011, Brown University

URL: https://repository.library.brown.edu/studio/item/bdr:11308/

► In this thesis, we study some boundary problems of the Boltzmann *equation* and the Boltzmann *equation* with the large external potential.If the gas is contained…
(more)

Subjects/Keywords: partial differential equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kim, C. (2011). Initial Boundary Value Problem of the Boltzmann Equation. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:11308/

Chicago Manual of Style (16^{th} Edition):

Kim, Chanwoo. “Initial Boundary Value Problem of the Boltzmann Equation.” 2011. Doctoral Dissertation, Brown University. Accessed October 01, 2020. https://repository.library.brown.edu/studio/item/bdr:11308/.

MLA Handbook (7^{th} Edition):

Kim, Chanwoo. “Initial Boundary Value Problem of the Boltzmann Equation.” 2011. Web. 01 Oct 2020.

Vancouver:

Kim C. Initial Boundary Value Problem of the Boltzmann Equation. [Internet] [Doctoral dissertation]. Brown University; 2011. [cited 2020 Oct 01]. Available from: https://repository.library.brown.edu/studio/item/bdr:11308/.

Council of Science Editors:

Kim C. Initial Boundary Value Problem of the Boltzmann Equation. [Doctoral Dissertation]. Brown University; 2011. Available from: https://repository.library.brown.edu/studio/item/bdr:11308/

Brno University of Technology

17.
Kráčmar, Jiří.
Diferenciální rovnice se zpožděním: *Delay* *differential* equations.

Degree: 2018, Brno University of Technology

URL: http://hdl.handle.net/11012/18931

► Bachelor thesis focuses on the issue of *differential* equations with *delay*, which, unlike ordinary *differential* equations, contain in the unknown function argument the function of…
(more)

Subjects/Keywords: Funkcionální diferenciální rovnice; diferenciální rovnice se zpožděním; metoda kroků; růst populací; logistická rovnice.; Functional differential equations; differential equations with delay; method of steps; growth of populations; logistic equation.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kráčmar, J. (2018). Diferenciální rovnice se zpožděním: Delay differential equations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/18931

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kráčmar, Jiří. “Diferenciální rovnice se zpožděním: Delay differential equations.” 2018. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/18931.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kráčmar, Jiří. “Diferenciální rovnice se zpožděním: Delay differential equations.” 2018. Web. 01 Oct 2020.

Vancouver:

Kráčmar J. Diferenciální rovnice se zpožděním: Delay differential equations. [Internet] [Thesis]. Brno University of Technology; 2018. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/18931.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kráčmar J. Diferenciální rovnice se zpožděním: Delay differential equations. [Thesis]. Brno University of Technology; 2018. Available from: http://hdl.handle.net/11012/18931

Not specified: Masters Thesis or Doctoral Dissertation

University of Rochester

18.
Kiria-Kaiserberg, Vyacheslav.
Explosion properties of stochastic *differential* *delay*
equations without drift.

Degree: PhD, 2016, University of Rochester

URL: http://hdl.handle.net/1802/31482

► In this thesis we investigate the conditions which lead to explosion of Stochastic *Differential* *Delay* Equations (SDDE). SDDE's are stochastic *differential* equations with *delay* in…
(more)

Subjects/Keywords: Delay equation; explosion time

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kiria-Kaiserberg, V. (2016). Explosion properties of stochastic differential delay equations without drift. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/31482

Chicago Manual of Style (16^{th} Edition):

Kiria-Kaiserberg, Vyacheslav. “Explosion properties of stochastic differential delay equations without drift.” 2016. Doctoral Dissertation, University of Rochester. Accessed October 01, 2020. http://hdl.handle.net/1802/31482.

MLA Handbook (7^{th} Edition):

Kiria-Kaiserberg, Vyacheslav. “Explosion properties of stochastic differential delay equations without drift.” 2016. Web. 01 Oct 2020.

Vancouver:

Kiria-Kaiserberg V. Explosion properties of stochastic differential delay equations without drift. [Internet] [Doctoral dissertation]. University of Rochester; 2016. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1802/31482.

Council of Science Editors:

Kiria-Kaiserberg V. Explosion properties of stochastic differential delay equations without drift. [Doctoral Dissertation]. University of Rochester; 2016. Available from: http://hdl.handle.net/1802/31482

University of Arizona

19.
McDaniel, Austin James.
The Effects of Time *Delay* on Noisy Systems
.

Degree: 2015, University of Arizona

URL: http://hdl.handle.net/10150/556867

► We consider a general stochastic *differential* *delay* *equation* (SDDE) with multiplicative colored noise. We study the limit as the time delays and the correlation times…
(more)

Subjects/Keywords: stochastic differential equations; time delay; Applied Mathematics; stochastic differential delay equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McDaniel, A. J. (2015). The Effects of Time Delay on Noisy Systems . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/556867

Chicago Manual of Style (16^{th} Edition):

McDaniel, Austin James. “The Effects of Time Delay on Noisy Systems .” 2015. Doctoral Dissertation, University of Arizona. Accessed October 01, 2020. http://hdl.handle.net/10150/556867.

MLA Handbook (7^{th} Edition):

McDaniel, Austin James. “The Effects of Time Delay on Noisy Systems .” 2015. Web. 01 Oct 2020.

Vancouver:

McDaniel AJ. The Effects of Time Delay on Noisy Systems . [Internet] [Doctoral dissertation]. University of Arizona; 2015. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/10150/556867.

Council of Science Editors:

McDaniel AJ. The Effects of Time Delay on Noisy Systems . [Doctoral Dissertation]. University of Arizona; 2015. Available from: http://hdl.handle.net/10150/556867

Brno University of Technology

20.
Béreš, Lukáš.
Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with *differential* equations.

Degree: 2019, Brno University of Technology

URL: http://hdl.handle.net/11012/66558

► The master's thesis is focused on the nonlinear *differential* equations. It contains theorems important to determine the behaviour of the nonlinear system only by study…
(more)

Subjects/Keywords: Nelineární diferenciální rovnice; kyvadlo; diferenciální rovnice se zpožděním; portálový jeřáb; oscilace lineární rovnice s nekonstantním zpožděním.; Nonlinear differential equations; pendulum; delay differential equations; gantry crane; oscillation of the linear equation with non-constant delay.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Béreš, L. (2019). Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/66558

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Béreš, Lukáš. “Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/66558.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Béreš, Lukáš. “Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations.” 2019. Web. 01 Oct 2020.

Vancouver:

Béreš L. Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/66558.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Béreš L. Matematické modelování pomocí diferenciálních rovnic: Mathematical modelling with differential equations. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/66558

Not specified: Masters Thesis or Doctoral Dissertation

21.
Koné, Mamadou Ibrahima.
Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with *delay* in state space.

Degree: Docteur es, Mathématiques appliquées, 2016, Paris 1

URL: http://www.theses.fr/2016PA01E063

►

L'objectif de cette thèse est de contribuer à l'optimisation de problèmes dynamiques en présence de retard. Le point de vue qui nous intéressera est celui… (more)

Subjects/Keywords: Résolvante; Équation différentielle fonctionnelle linéarisée; Contrôle optimal; Principe de Pontryagin; Équation différentielle fonctionnelle; Calcul des variations; Condition d'Euler-Lagrange; Théorème de représentation de Riesz; Resolvent; Linear delay functional differential equation; Optimal control; Pontryagin principle; Functional differential equation; Calculus of variation; Euler-Lagrange condition; Riesz representation theorem; 515

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Koné, M. I. (2016). Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space. (Doctoral Dissertation). Paris 1. Retrieved from http://www.theses.fr/2016PA01E063

Chicago Manual of Style (16^{th} Edition):

Koné, Mamadou Ibrahima. “Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space.” 2016. Doctoral Dissertation, Paris 1. Accessed October 01, 2020. http://www.theses.fr/2016PA01E063.

MLA Handbook (7^{th} Edition):

Koné, Mamadou Ibrahima. “Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space.” 2016. Web. 01 Oct 2020.

Vancouver:

Koné MI. Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space. [Internet] [Doctoral dissertation]. Paris 1; 2016. [cited 2020 Oct 01]. Available from: http://www.theses.fr/2016PA01E063.

Council of Science Editors:

Koné MI. Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space. [Doctoral Dissertation]. Paris 1; 2016. Available from: http://www.theses.fr/2016PA01E063

22. Rossi, Marcelo. Modelo matemático da resposta imune à infecção pelo vírus HIV-1.

Degree: PhD, Biotecnologia, 2008, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/ ;

►

Avanços recentes nos conhecimentos sobre a infecção viral e AIDS tem levado pacientes soropositivos a uma melhor qualidade de vida. A determinação de quais populações… (more)

Subjects/Keywords: Delay differential equation; Epidemiologia; Epidemiology; Equação diferencial com retardamento; HIV infection; Immune system; Infecção por HIV; Mathematical modeling; Modelagem matemática; Sistema imune

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rossi, M. (2008). Modelo matemático da resposta imune à infecção pelo vírus HIV-1. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/ ;

Chicago Manual of Style (16^{th} Edition):

Rossi, Marcelo. “Modelo matemático da resposta imune à infecção pelo vírus HIV-1.” 2008. Doctoral Dissertation, University of São Paulo. Accessed October 01, 2020. http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/ ;.

MLA Handbook (7^{th} Edition):

Rossi, Marcelo. “Modelo matemático da resposta imune à infecção pelo vírus HIV-1.” 2008. Web. 01 Oct 2020.

Vancouver:

Rossi M. Modelo matemático da resposta imune à infecção pelo vírus HIV-1. [Internet] [Doctoral dissertation]. University of São Paulo; 2008. [cited 2020 Oct 01]. Available from: http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/ ;.

Council of Science Editors:

Rossi M. Modelo matemático da resposta imune à infecção pelo vírus HIV-1. [Doctoral Dissertation]. University of São Paulo; 2008. Available from: http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/ ;

Cornell University

23. Morrison, Tina Marie. THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION.

Degree: 2006, Cornell University

URL: http://hdl.handle.net/1813/2952

► Parametric excitation is epitomized by the Mathieu *equation*, x''+(d + e cos t)x = 0, which involves the characteristic feature of 2:1 resonance. This thesis…
(more)

Subjects/Keywords: Parametric Excitation; Delay Differential Equation; Hopf Bifurcation; Quasiperiodic Mathieu; Bifurcations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Morrison, T. M. (2006). THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION. (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/2952

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Morrison, Tina Marie. “THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION.” 2006. Thesis, Cornell University. Accessed October 01, 2020. http://hdl.handle.net/1813/2952.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Morrison, Tina Marie. “THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION.” 2006. Web. 01 Oct 2020.

Vancouver:

Morrison TM. THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION. [Internet] [Thesis]. Cornell University; 2006. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1813/2952.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Morrison TM. THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION. [Thesis]. Cornell University; 2006. Available from: http://hdl.handle.net/1813/2952

Not specified: Masters Thesis or Doctoral Dissertation

Brno University of Technology

24.
Dražková, Jana.
Stability of Neutral *Delay* *Differential* Equations and Their Discretizations: Stability of Neutral *Delay* *Differential* Equations and Their Discretizations.

Degree: 2019, Brno University of Technology

URL: http://hdl.handle.net/11012/36294

► The doctoral thesis discusses the asymptotic stability of *delay* *differential* equations and their discretizations. The linear *delay* *differential* equations with constant as well as infinite…
(more)

Subjects/Keywords: neutrální zpožděná diferenciální rovnice; $\Theta$-metoda; asymptotická stabilita; $\tau$-stabilita; konstantní zpoždění; neohraničené zpoždění; neutral delay differential equation; $\Theta$-method; asymptotic stability; $\tau$-stability; constant lag; infinite lag

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dražková, J. (2019). Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/36294

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dražková, Jana. “Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/36294.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dražková, Jana. “Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations.” 2019. Web. 01 Oct 2020.

Vancouver:

Dražková J. Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/36294.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dražková J. Stability of Neutral Delay Differential Equations and Their Discretizations: Stability of Neutral Delay Differential Equations and Their Discretizations. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/36294

Not specified: Masters Thesis or Doctoral Dissertation

University of Notre Dame

25.
Melissa Davidson.
Continuity Properties of the Solution Map for the
Generalized Reduced Ostrovsky *Equation*</h1>.

Degree: Mathematics, 2013, University of Notre Dame

URL: https://curate.nd.edu/show/9p29086334c

► It is shown that the data-to-solution map for the generalized reduced Ostrovsky (gRO) *equation* is not uniformly continuous on bounded sets in Sobolev spaces…
(more)

Subjects/Keywords: soliton; wave equation; partial differential equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Davidson, M. (2013). Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/9p29086334c

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.” 2013. Thesis, University of Notre Dame. Accessed October 01, 2020. https://curate.nd.edu/show/9p29086334c.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.” 2013. Web. 01 Oct 2020.

Vancouver:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. [Internet] [Thesis]. University of Notre Dame; 2013. [cited 2020 Oct 01]. Available from: https://curate.nd.edu/show/9p29086334c.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. [Thesis]. University of Notre Dame; 2013. Available from: https://curate.nd.edu/show/9p29086334c

Not specified: Masters Thesis or Doctoral Dissertation

Delft University of Technology

26.
Van Leeuwen, J.P.H. (author).
A nonlinear Schrödinger *equation* in L² with multiplicative white noise.

Degree: 2011, Delft University of Technology

URL: http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be

In this thesis existence and uniqueness of the solution of a nonlinear Schrödinger equation in L² with multiplicative white noise is proven under some assumptions. Furthermore, pathwise L²-norm conservation of the solution is studied.

Analysis

Applied mathematics

Electrical Engineering, Mathematics and Computer Science

Subjects/Keywords: stochastic partial differential equation; nonlinear Schrödinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Van Leeuwen, J. P. H. (. (2011). A nonlinear Schrödinger equation in L² with multiplicative white noise. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be

Chicago Manual of Style (16^{th} Edition):

Van Leeuwen, J P H (author). “A nonlinear Schrödinger equation in L² with multiplicative white noise.” 2011. Masters Thesis, Delft University of Technology. Accessed October 01, 2020. http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be.

MLA Handbook (7^{th} Edition):

Van Leeuwen, J P H (author). “A nonlinear Schrödinger equation in L² with multiplicative white noise.” 2011. Web. 01 Oct 2020.

Vancouver:

Van Leeuwen JPH(. A nonlinear Schrödinger equation in L² with multiplicative white noise. [Internet] [Masters thesis]. Delft University of Technology; 2011. [cited 2020 Oct 01]. Available from: http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be.

Council of Science Editors:

Van Leeuwen JPH(. A nonlinear Schrödinger equation in L² with multiplicative white noise. [Masters Thesis]. Delft University of Technology; 2011. Available from: http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be

Queens University

27.
Rozins, Carly.
An impulsive *differential* *equation* model for Marek's disease
.

Degree: Mathematics and Statistics, 2016, Queens University

URL: http://hdl.handle.net/1974/14944

► Many dynamical processes are *subject* to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process.…
(more)

Subjects/Keywords: poultry ; SIR ; model ; differential equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rozins, C. (2016). An impulsive differential equation model for Marek's disease . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/14944

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rozins, Carly. “An impulsive differential equation model for Marek's disease .” 2016. Thesis, Queens University. Accessed October 01, 2020. http://hdl.handle.net/1974/14944.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rozins, Carly. “An impulsive differential equation model for Marek's disease .” 2016. Web. 01 Oct 2020.

Vancouver:

Rozins C. An impulsive differential equation model for Marek's disease . [Internet] [Thesis]. Queens University; 2016. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1974/14944.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rozins C. An impulsive differential equation model for Marek's disease . [Thesis]. Queens University; 2016. Available from: http://hdl.handle.net/1974/14944

Not specified: Masters Thesis or Doctoral Dissertation

Kwame Nkrumah University of Science and Technology

28.
Allotey, Jacobs Bernard.
Modelling an *Equation* for Detecting Diabetes.

Degree: 2012, Kwame Nkrumah University of Science and Technology

URL: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/4523

►

Diabetes is a syndrome of disordered metabolism, usually due to a combination of hereditary and environmental causes, resulting in abnormally high blood sugar levels. Various… (more)

Subjects/Keywords: Differential equation; Diabetes; Glucose; Insulin

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Allotey, J. B. (2012). Modelling an Equation for Detecting Diabetes. (Thesis). Kwame Nkrumah University of Science and Technology. Retrieved from http://dspace.knust.edu.gh:8080/jspui/handle/123456789/4523

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Allotey, Jacobs Bernard. “Modelling an Equation for Detecting Diabetes.” 2012. Thesis, Kwame Nkrumah University of Science and Technology. Accessed October 01, 2020. http://dspace.knust.edu.gh:8080/jspui/handle/123456789/4523.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Allotey, Jacobs Bernard. “Modelling an Equation for Detecting Diabetes.” 2012. Web. 01 Oct 2020.

Vancouver:

Allotey JB. Modelling an Equation for Detecting Diabetes. [Internet] [Thesis]. Kwame Nkrumah University of Science and Technology; 2012. [cited 2020 Oct 01]. Available from: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/4523.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Allotey JB. Modelling an Equation for Detecting Diabetes. [Thesis]. Kwame Nkrumah University of Science and Technology; 2012. Available from: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/4523

Not specified: Masters Thesis or Doctoral Dissertation

29. Bou Saba, David. Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension.

Degree: Docteur es, Automatique, 2018, Lyon

URL: http://www.theses.fr/2018LYSEI084

►

Les réseaux de lois de bilan sont définis par l'interconnexion, via des conditions aux bords, de modules élémentaires individuellement caractérisés par la conservation de certaines… (more)

Subjects/Keywords: Automatique; Commande automatique; Systèmes linéaires; Equation aux dérivées partielles; Analyse de stabilité; Equations aux différences; Systèmes à retards; Automatics; Automatic control; Linear system; Partial differential equation; Stability analysis; Difference equation; Delay systems; 629.832 072

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bou Saba, D. (2018). Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2018LYSEI084

Chicago Manual of Style (16^{th} Edition):

Bou Saba, David. “Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension.” 2018. Doctoral Dissertation, Lyon. Accessed October 01, 2020. http://www.theses.fr/2018LYSEI084.

MLA Handbook (7^{th} Edition):

Bou Saba, David. “Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension.” 2018. Web. 01 Oct 2020.

Vancouver:

Bou Saba D. Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension. [Internet] [Doctoral dissertation]. Lyon; 2018. [cited 2020 Oct 01]. Available from: http://www.theses.fr/2018LYSEI084.

Council of Science Editors:

Bou Saba D. Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie : Modular analysis and control of notworks of balance laws in infinite dimension. [Doctoral Dissertation]. Lyon; 2018. Available from: http://www.theses.fr/2018LYSEI084

Brno University of Technology

30.
Dvořáková, Stanislava.
The Qualitative and Numerical Analysis of Nonlinear *Delay* *Differential* Equations: The Qualitative and Numerical Analysis of Nonlinear *Delay* *Differential* Equations.

Degree: 2019, Brno University of Technology

URL: http://hdl.handle.net/11012/6207

► This thesis formulates the asymptotic estimates of solutions of the so-called sublinear and superlinear *differential* equations with a delayed argument. These estimates are given in…
(more)

Subjects/Keywords: Nelineární diferenciální rovnice se zpožděním; funkcionální rovnice a nerovnice; diferenční rovnice; asymptotické chování; q-metoda; stabilita; Nonlinear delay differential equation; functional equation and inequality; difference equation; asymptotic behavior; the q-method; stability

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dvořáková, S. (2019). The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/6207

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dvořáková, Stanislava. “The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations.” 2019. Thesis, Brno University of Technology. Accessed October 01, 2020. http://hdl.handle.net/11012/6207.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dvořáková, Stanislava. “The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations.” 2019. Web. 01 Oct 2020.

Vancouver:

Dvořáková S. The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/11012/6207.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dvořáková S. The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/6207

Not specified: Masters Thesis or Doctoral Dissertation