Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( Umbilicity). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Universidade Federal de Viçosa

1. Tiago Rodrigo Perdigão. Semiumbilicidade e umbilicidade em superfícies imersas em Rn, n ≥ 4.

Degree: 2011, Universidade Federal de Viçosa

Neste trabalho introduzimos o conceito de elipse de curvatura em um ponto de uma superfície imersa em Rn, n ≥ 4 com o objetivo de estudar as relações entre pontos semiumbílicos (pontos onde a elipse de curvatura se degenera em um segmento de reta), a existência de direções normais de umbilicidade à superfície e superfícies hiperesféricas. Para obter tais objetivos baseamos nossos resultados principalmente nos artigos “Umbilicity of surfaces with orthogonal asymptotic lines in IR4” de M. C. Romero-Fuster e F. Sánchez-Bringas [24] e “Geometric Contacts of Surfaces Immersed in IRn, n ≥ 5” de S. I. R. Costa, S. M. Moraes e M. C. Romero-Fuster [5].

In this work we introduce the concept of curvature ellipse at one point of a surface immersed in Rn, n ≥ 4 to study the relationship between semiumbilics points (points that the curvature ellipse degenerated in a segment line), the existence of umbilic normal directions to the surface and hyperspherical surfaces. To achieve these goals we base our results especially in the articles “Umbilicity of surfaces with orthogonal asymptotic lines in R4” of M. C. Romero-Fuster and F. Sánchez-Bringas [24] and “Geometric Contacts of Surfaces Immersed in Rn, n ≥ 5” of S. I. R. Costa, S. M. Moraes and M. C. Romero-Fuster [5].

Advisors/Committee Members: Mercio Botelho Faria, Simone Maria de Moraes, Catarina Mendes de Jesus, Ezequiel Rodrigues Barbosa, Rosivaldo Antonio Gonçalves.

Subjects/Keywords: Semiumbilicidade; Elipse de curvatura; Umbilicidade; GEOMETRIA E TOPOLOGIA; Curvature ellipse; Semiumbilicity; Umbilicity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perdigão, T. R. (2011). Semiumbilicidade e umbilicidade em superfícies imersas em Rn, n ≥ 4. (Thesis). Universidade Federal de Viçosa. Retrieved from http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=3298

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perdigão, Tiago Rodrigo. “Semiumbilicidade e umbilicidade em superfícies imersas em Rn, n ≥ 4.” 2011. Thesis, Universidade Federal de Viçosa. Accessed October 28, 2020. http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=3298.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perdigão, Tiago Rodrigo. “Semiumbilicidade e umbilicidade em superfícies imersas em Rn, n ≥ 4.” 2011. Web. 28 Oct 2020.

Vancouver:

Perdigão TR. Semiumbilicidade e umbilicidade em superfícies imersas em Rn, n ≥ 4. [Internet] [Thesis]. Universidade Federal de Viçosa; 2011. [cited 2020 Oct 28]. Available from: http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=3298.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perdigão TR. Semiumbilicidade e umbilicidade em superfícies imersas em Rn, n ≥ 4. [Thesis]. Universidade Federal de Viçosa; 2011. Available from: http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=3298

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Neilha Marcia Pinheiro. Rigidez da esfera no espaÃo euclidiano.

Degree: Master, 2013, Universidade Federal do Ceará

Neste trabalho, provamos novos resutados de rigidez para hipersuperfÃcies quase-Einsteins no espaÃo euclidiano, baseado-se nos resultados pinching do autovalor. EntÃo, nÃs deduzimos alguns resultados anÃlogos para hipersuperfÃcies quase-umbÃlicas e uma nova caracterizaÃÃo de esferas geodÃsicas

In this work, we prove new rigidity results for almost-Einstein hypersurfaces of the Euclidean space, based on previous eigenvalue pinching results. Then, we deduce some comparable result for almost-umbilic hypersurfaces and new characterizations of geodesic spheres.

Advisors/Committee Members: SebastiÃo Carneiro de Almeida, Antonio Gervasio Colares, Gregorio Pacelli Feitosa Bessa.

Subjects/Keywords: GEOMETRIA DIFERENCIAL; rigidez da esfera; tensor de umbilicidade; curvaturas mÃdias de ordens superiores; sphere rigidity; umbilicity tensor; higher order mean curvatures

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pinheiro, N. M. (2013). Rigidez da esfera no espaÃo euclidiano. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11203 ;

Chicago Manual of Style (16th Edition):

Pinheiro, Neilha Marcia. “Rigidez da esfera no espaÃo euclidiano.” 2013. Masters Thesis, Universidade Federal do Ceará. Accessed October 28, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11203 ;.

MLA Handbook (7th Edition):

Pinheiro, Neilha Marcia. “Rigidez da esfera no espaÃo euclidiano.” 2013. Web. 28 Oct 2020.

Vancouver:

Pinheiro NM. Rigidez da esfera no espaÃo euclidiano. [Internet] [Masters thesis]. Universidade Federal do Ceará 2013. [cited 2020 Oct 28]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11203 ;.

Council of Science Editors:

Pinheiro NM. Rigidez da esfera no espaÃo euclidiano. [Masters Thesis]. Universidade Federal do Ceará 2013. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11203 ;


University of South Africa

3. Tshikunguila, Tshikuna-Matamba. The differential geometry of the fibres of an almost contract metric submersion .

Degree: 2013, University of South Africa

Almost contact metric submersions constitute a class of Riemannian submersions whose total space is an almost contact metric manifold. Regarding the base space, two types are studied. Submersions of type I are those whose base space is an almost contact metric manifold while, when the base space is an almost Hermitian manifold, then the submersion is said to be of type II. After recalling the known notions and fundamental properties to be used in the sequel, relationships between the structure of the fibres with that of the total space are established. When the fibres are almost Hermitian manifolds, which occur in the case of a type I submersions, we determine the classes of submersions whose fibres are Kählerian, almost Kählerian, nearly Kählerian, quasi Kählerian, locally conformal (almost) Kählerian, Gi-manifolds and so on. This can be viewed as a classification of submersions of type I based upon the structure of the fibres. Concerning the fibres of a type II submersions, which are almost contact metric manifolds, we discuss how they inherit the structure of the total space. Considering the curvature property on the total space, we determine its corresponding on the fibres in the case of a type I submersions. For instance, the cosymplectic curvature property on the total space corresponds to the Kähler identity on the fibres. Similar results are obtained for Sasakian and Kenmotsu curvature properties. After producing the classes of submersions with minimal, superminimal or umbilical fibres, their impacts on the total or the base space are established. The minimality of the fibres facilitates the transference of the structure from the total to the base space. Similarly, the superminimality of the fibres facilitates the transference of the structure from the base to the total space. Also, it is shown to be a way to study the integrability of the horizontal distribution. Totally contact umbilicity of the fibres leads to the asymptotic directions on the total space. Submersions of contact CR-submanifolds of quasi-K-cosymplectic and quasi-Kenmotsu manifolds are studied. Certain distributions of the under consideration submersions induce the CR-product on the total space. Advisors/Committee Members: Batubenge, T. A (advisor), Massamba, F (advisor).

Subjects/Keywords: Differential Geometry; Riemannian submersions; Almost contact metric submersions; CR-submersions; Contact CR-submanifolds; Almost contact metric manifolds; Almost Hermitian manifolds; Riemannian curvature tensor; Holomorphic sectional curvature; Minimal fibres; Superminimal fibres; Umbilicity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tshikunguila, T. (2013). The differential geometry of the fibres of an almost contract metric submersion . (Doctoral Dissertation). University of South Africa. Retrieved from http://hdl.handle.net/10500/18622

Chicago Manual of Style (16th Edition):

Tshikunguila, Tshikuna-Matamba. “The differential geometry of the fibres of an almost contract metric submersion .” 2013. Doctoral Dissertation, University of South Africa. Accessed October 28, 2020. http://hdl.handle.net/10500/18622.

MLA Handbook (7th Edition):

Tshikunguila, Tshikuna-Matamba. “The differential geometry of the fibres of an almost contract metric submersion .” 2013. Web. 28 Oct 2020.

Vancouver:

Tshikunguila T. The differential geometry of the fibres of an almost contract metric submersion . [Internet] [Doctoral dissertation]. University of South Africa; 2013. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/10500/18622.

Council of Science Editors:

Tshikunguila T. The differential geometry of the fibres of an almost contract metric submersion . [Doctoral Dissertation]. University of South Africa; 2013. Available from: http://hdl.handle.net/10500/18622

.