Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( Torelli). Showing records 1 – 20 of 20 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Georgia

1. Tenini, Joseph Anthony. Results on an extended Torelli map and singularities of degenerate abelian varieties.

Degree: PhD, Mathematics, 2014, University of Georgia

 The Torelli map associates to a smooth genus g projective curve a g-dimensional principally polarized abelian variety and is a map on the respective moduli… (more)

Subjects/Keywords: Torelli Map

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tenini, J. A. (2014). Results on an extended Torelli map and singularities of degenerate abelian varieties. (Doctoral Dissertation). University of Georgia. Retrieved from http://purl.galileo.usg.edu/uga_etd/tenini_joseph_a_201405_phd

Chicago Manual of Style (16th Edition):

Tenini, Joseph Anthony. “Results on an extended Torelli map and singularities of degenerate abelian varieties.” 2014. Doctoral Dissertation, University of Georgia. Accessed August 06, 2020. http://purl.galileo.usg.edu/uga_etd/tenini_joseph_a_201405_phd.

MLA Handbook (7th Edition):

Tenini, Joseph Anthony. “Results on an extended Torelli map and singularities of degenerate abelian varieties.” 2014. Web. 06 Aug 2020.

Vancouver:

Tenini JA. Results on an extended Torelli map and singularities of degenerate abelian varieties. [Internet] [Doctoral dissertation]. University of Georgia; 2014. [cited 2020 Aug 06]. Available from: http://purl.galileo.usg.edu/uga_etd/tenini_joseph_a_201405_phd.

Council of Science Editors:

Tenini JA. Results on an extended Torelli map and singularities of degenerate abelian varieties. [Doctoral Dissertation]. University of Georgia; 2014. Available from: http://purl.galileo.usg.edu/uga_etd/tenini_joseph_a_201405_phd


Johannes Gutenberg Universität Mainz

2. Mohajernaser, Abolfazl. Shimura subvarieties and the Torelli locus.

Degree: 2014, Johannes Gutenberg Universität Mainz

We investigate the Torelli locus of abelian and cyclic covers of the projective line for occurrence of Shimura subvarieties. Amon other things, we show that… (more)

Subjects/Keywords: Shimura Varietäten Torelli locus; Shimura varieties Torelli locus; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mohajernaser, A. (2014). Shimura subvarieties and the Torelli locus. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2014/3670/

Chicago Manual of Style (16th Edition):

Mohajernaser, Abolfazl. “Shimura subvarieties and the Torelli locus.” 2014. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed August 06, 2020. http://ubm.opus.hbz-nrw.de/volltexte/2014/3670/.

MLA Handbook (7th Edition):

Mohajernaser, Abolfazl. “Shimura subvarieties and the Torelli locus.” 2014. Web. 06 Aug 2020.

Vancouver:

Mohajernaser A. Shimura subvarieties and the Torelli locus. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2014. [cited 2020 Aug 06]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2014/3670/.

Council of Science Editors:

Mohajernaser A. Shimura subvarieties and the Torelli locus. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2014. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2014/3670/


Duke University

3. Kordek, Kevin A. Theta Functions and the Structure of Torelli Groups in Low Genus .

Degree: 2015, Duke University

  The Torelli group Tg of a closed orientable surface Sg of genus g >1 is the group of isotopy classes of orientation-preserving diffeomorphisms of… (more)

Subjects/Keywords: Mathematics; moduli space; theta function; Torelli

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kordek, K. A. (2015). Theta Functions and the Structure of Torelli Groups in Low Genus . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/9908

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kordek, Kevin A. “Theta Functions and the Structure of Torelli Groups in Low Genus .” 2015. Thesis, Duke University. Accessed August 06, 2020. http://hdl.handle.net/10161/9908.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kordek, Kevin A. “Theta Functions and the Structure of Torelli Groups in Low Genus .” 2015. Web. 06 Aug 2020.

Vancouver:

Kordek KA. Theta Functions and the Structure of Torelli Groups in Low Genus . [Internet] [Thesis]. Duke University; 2015. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10161/9908.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kordek KA. Theta Functions and the Structure of Torelli Groups in Low Genus . [Thesis]. Duke University; 2015. Available from: http://hdl.handle.net/10161/9908

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Manitoba

4. Akhtariiev, Mykhailo. Teichmuller space and its representation with the period mapping.

Degree: Mathematics, 2016, University of Manitoba

 In this thesis, we investigate the period mapping of Teichmuller space into the Siegel upper half space. This is constructed from integrals of a basis… (more)

Subjects/Keywords: Mathematics; Teichmuller space; Torelli space; Riemann space; Period mapping; Teichmuller theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Akhtariiev, M. (2016). Teichmuller space and its representation with the period mapping. (Masters Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/31759

Chicago Manual of Style (16th Edition):

Akhtariiev, Mykhailo. “Teichmuller space and its representation with the period mapping.” 2016. Masters Thesis, University of Manitoba. Accessed August 06, 2020. http://hdl.handle.net/1993/31759.

MLA Handbook (7th Edition):

Akhtariiev, Mykhailo. “Teichmuller space and its representation with the period mapping.” 2016. Web. 06 Aug 2020.

Vancouver:

Akhtariiev M. Teichmuller space and its representation with the period mapping. [Internet] [Masters thesis]. University of Manitoba; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1993/31759.

Council of Science Editors:

Akhtariiev M. Teichmuller space and its representation with the period mapping. [Masters Thesis]. University of Manitoba; 2016. Available from: http://hdl.handle.net/1993/31759


Rice University

5. Allums, Derek. Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12.

Degree: PhD, Natural Sciences, 2016, Rice University

 We show that a smooth projective geometrically rationally connected variety over the real numbers with at least one rational point admits a non-constant mapping from… (more)

Subjects/Keywords: rationally connected varieties; fano threefolds; V22; torelli theorem; real varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Allums, D. (2016). Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/95585

Chicago Manual of Style (16th Edition):

Allums, Derek. “Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12.” 2016. Doctoral Dissertation, Rice University. Accessed August 06, 2020. http://hdl.handle.net/1911/95585.

MLA Handbook (7th Edition):

Allums, Derek. “Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12.” 2016. Web. 06 Aug 2020.

Vancouver:

Allums D. Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12. [Internet] [Doctoral dissertation]. Rice University; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1911/95585.

Council of Science Editors:

Allums D. Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12. [Doctoral Dissertation]. Rice University; 2016. Available from: http://hdl.handle.net/1911/95585

6. Berg, B. van den. On the abelianization of the Torelli group.

Degree: 2003, University Utrecht

 Around 1980 Dennis Johnson computed the abelianized Torelli group for surfaces of genus at least three and at most one boundary component. His computation shows… (more)

Subjects/Keywords: Torelli group; Harer's arc-complex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Berg, B. v. d. (2003). On the abelianization of the Torelli group. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/888 ; URN:NBN:NL:UI:10-1874-888 ; URN:NBN:NL:UI:10-1874-888 ; https://dspace.library.uu.nl/handle/1874/888

Chicago Manual of Style (16th Edition):

Berg, B van den. “On the abelianization of the Torelli group.” 2003. Doctoral Dissertation, University Utrecht. Accessed August 06, 2020. https://dspace.library.uu.nl/handle/1874/888 ; URN:NBN:NL:UI:10-1874-888 ; URN:NBN:NL:UI:10-1874-888 ; https://dspace.library.uu.nl/handle/1874/888.

MLA Handbook (7th Edition):

Berg, B van den. “On the abelianization of the Torelli group.” 2003. Web. 06 Aug 2020.

Vancouver:

Berg Bvd. On the abelianization of the Torelli group. [Internet] [Doctoral dissertation]. University Utrecht; 2003. [cited 2020 Aug 06]. Available from: https://dspace.library.uu.nl/handle/1874/888 ; URN:NBN:NL:UI:10-1874-888 ; URN:NBN:NL:UI:10-1874-888 ; https://dspace.library.uu.nl/handle/1874/888.

Council of Science Editors:

Berg Bvd. On the abelianization of the Torelli group. [Doctoral Dissertation]. University Utrecht; 2003. Available from: https://dspace.library.uu.nl/handle/1874/888 ; URN:NBN:NL:UI:10-1874-888 ; URN:NBN:NL:UI:10-1874-888 ; https://dspace.library.uu.nl/handle/1874/888


Louisiana State University

7. Childers, Leah R. Subgroups of the Torelli group.

Degree: PhD, Applied Mathematics, 2010, Louisiana State University

 Let Mod(Sg) be the mapping class group of an orientable surface of genus g, Sg. The action of Mod(Sg) on the homology of Sg induces… (more)

Subjects/Keywords: symmetric separating curve complex; Torelli group; mapping class group; symmetric Torelli group; simply intersecting pair maps; curve complex; symmetric mapping class group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Childers, L. R. (2010). Subgroups of the Torelli group. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-05252010-101928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/536

Chicago Manual of Style (16th Edition):

Childers, Leah R. “Subgroups of the Torelli group.” 2010. Doctoral Dissertation, Louisiana State University. Accessed August 06, 2020. etd-05252010-101928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/536.

MLA Handbook (7th Edition):

Childers, Leah R. “Subgroups of the Torelli group.” 2010. Web. 06 Aug 2020.

Vancouver:

Childers LR. Subgroups of the Torelli group. [Internet] [Doctoral dissertation]. Louisiana State University; 2010. [cited 2020 Aug 06]. Available from: etd-05252010-101928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/536.

Council of Science Editors:

Childers LR. Subgroups of the Torelli group. [Doctoral Dissertation]. Louisiana State University; 2010. Available from: etd-05252010-101928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/536


UCLA

8. Chen, Xiaojing. A global Torelli theorem of projective manifolds.

Degree: Mathematics, 2014, UCLA

 This thesis has studied global Torelli problems for projective manifolds. In particular, we have focused on projective manifolds of Calabi-Yau type, which is a generalization… (more)

Subjects/Keywords: Mathematics; Calabi-Yau type manifolds; global Torelli Theorem; injectivity; period map; Teichmuller space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, X. (2014). A global Torelli theorem of projective manifolds. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/70h5p4v1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Xiaojing. “A global Torelli theorem of projective manifolds.” 2014. Thesis, UCLA. Accessed August 06, 2020. http://www.escholarship.org/uc/item/70h5p4v1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Xiaojing. “A global Torelli theorem of projective manifolds.” 2014. Web. 06 Aug 2020.

Vancouver:

Chen X. A global Torelli theorem of projective manifolds. [Internet] [Thesis]. UCLA; 2014. [cited 2020 Aug 06]. Available from: http://www.escholarship.org/uc/item/70h5p4v1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen X. A global Torelli theorem of projective manifolds. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/70h5p4v1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Y. Zhao. Deformations of nodal surfaces.

Degree: 2016, Università degli Studi di Milano

 In this thesis, we studied the Hodge theory and deformation theory of nodal surfaces. We showed that nodal surfaces in the projective 3-space satisfy the… (more)

Subjects/Keywords: Hodge theory; infinitesimal Torelli theorem; even nodal surfaces; mixed Hodge modules; Settore MAT/03 - Geometria

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, Y. (2016). Deformations of nodal surfaces. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/453882

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhao, Y.. “Deformations of nodal surfaces.” 2016. Thesis, Università degli Studi di Milano. Accessed August 06, 2020. http://hdl.handle.net/2434/453882.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhao, Y.. “Deformations of nodal surfaces.” 2016. Web. 06 Aug 2020.

Vancouver:

Zhao Y. Deformations of nodal surfaces. [Internet] [Thesis]. Università degli Studi di Milano; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/2434/453882.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhao Y. Deformations of nodal surfaces. [Thesis]. Università degli Studi di Milano; 2016. Available from: http://hdl.handle.net/2434/453882

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


California State University – Northridge

10. Armour, Robert H. Graduate recital in trumpet.

Degree: MA, Department of Music, 1978, California State University – Northridge

 Intended as a representative sampling of the available trumpet literature, this program contains works from each of the main style periods, presented in chronological order.… (more)

Subjects/Keywords: Torelli, G.; Dissertations, Academic  – CSUN  – Music

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Armour, R. H. (1978). Graduate recital in trumpet. (Masters Thesis). California State University – Northridge. Retrieved from http://hdl.handle.net/10211.3/137354

Chicago Manual of Style (16th Edition):

Armour, Robert H. “Graduate recital in trumpet.” 1978. Masters Thesis, California State University – Northridge. Accessed August 06, 2020. http://hdl.handle.net/10211.3/137354.

MLA Handbook (7th Edition):

Armour, Robert H. “Graduate recital in trumpet.” 1978. Web. 06 Aug 2020.

Vancouver:

Armour RH. Graduate recital in trumpet. [Internet] [Masters thesis]. California State University – Northridge; 1978. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10211.3/137354.

Council of Science Editors:

Armour RH. Graduate recital in trumpet. [Masters Thesis]. California State University – Northridge; 1978. Available from: http://hdl.handle.net/10211.3/137354


Universiteit Utrecht

11. Berg, B. van den. On the abelianization of the Torelli group.

Degree: 2003, Universiteit Utrecht

 Around 1980 Dennis Johnson computed the abelianized Torelli group for surfaces of genus at least three and at most one boundary component. His computation shows… (more)

Subjects/Keywords: Wiskunde en Informatica; Torelli group; Harer's arc-complex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Berg, B. v. d. (2003). On the abelianization of the Torelli group. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/888

Chicago Manual of Style (16th Edition):

Berg, B van den. “On the abelianization of the Torelli group.” 2003. Doctoral Dissertation, Universiteit Utrecht. Accessed August 06, 2020. http://dspace.library.uu.nl:8080/handle/1874/888.

MLA Handbook (7th Edition):

Berg, B van den. “On the abelianization of the Torelli group.” 2003. Web. 06 Aug 2020.

Vancouver:

Berg Bvd. On the abelianization of the Torelli group. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2003. [cited 2020 Aug 06]. Available from: http://dspace.library.uu.nl:8080/handle/1874/888.

Council of Science Editors:

Berg Bvd. On the abelianization of the Torelli group. [Doctoral Dissertation]. Universiteit Utrecht; 2003. Available from: http://dspace.library.uu.nl:8080/handle/1874/888

12. Toinet, Emmanuel. Automorphisms of right-angled Artin groups : Automorphismes des groupes d'Artin à angles droits.

Degree: Docteur es, Mathématiques, 2012, Université de Bourgogne

Cette thèse a pour objet l’étude des automorphismes des groupes d’Artin à angles droits. Etant donné un graphe simple fini G, le groupe d’Artin à… (more)

Subjects/Keywords: Groupe d’Artin à angles droits; Groupe d’automorphismes; Groupe de Torelli; Propriétés résiduelles; Propriétés de séparabilité; Topologie pro-p; Présentation d’un groupe; Right-angled Artin group; Automorphism group; Torelli group; Residual properties; Separability properties; Pro-p topology; Presentation of a group; 512; 516

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Toinet, E. (2012). Automorphisms of right-angled Artin groups : Automorphismes des groupes d'Artin à angles droits. (Doctoral Dissertation). Université de Bourgogne. Retrieved from http://www.theses.fr/2012DIJOS003

Chicago Manual of Style (16th Edition):

Toinet, Emmanuel. “Automorphisms of right-angled Artin groups : Automorphismes des groupes d'Artin à angles droits.” 2012. Doctoral Dissertation, Université de Bourgogne. Accessed August 06, 2020. http://www.theses.fr/2012DIJOS003.

MLA Handbook (7th Edition):

Toinet, Emmanuel. “Automorphisms of right-angled Artin groups : Automorphismes des groupes d'Artin à angles droits.” 2012. Web. 06 Aug 2020.

Vancouver:

Toinet E. Automorphisms of right-angled Artin groups : Automorphismes des groupes d'Artin à angles droits. [Internet] [Doctoral dissertation]. Université de Bourgogne; 2012. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2012DIJOS003.

Council of Science Editors:

Toinet E. Automorphisms of right-angled Artin groups : Automorphismes des groupes d'Artin à angles droits. [Doctoral Dissertation]. Université de Bourgogne; 2012. Available from: http://www.theses.fr/2012DIJOS003


Université Paris-Sud – Paris XI

13. Haettel, Thomas. Compactifications géométriques dans les groupes, les espaces symétriques et les immeubles : Geometric compactifications in groups, symmetric spaces and buildings.

Degree: Docteur es, Mathématiques, 2011, Université Paris-Sud – Paris XI

Dans cette thèse, nous nous intéressons à des compactifications géométriques variées. Nous décrivons l'espace des sous-groupes fermés du groupe RxZ. Nous étudions la compactification de… (more)

Subjects/Keywords: Espace de sous-groupe fermés; Topologie de Chabauty; Espace symétrique de type non compact; Sous-groupe de Cartan; Compactification de Thurston; Espace de Torelli; Space of closed subgroups; Chabauty topology; Symmetric space of non-compact type; Cartan subgroup; Thurston compactification; Torelli space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haettel, T. (2011). Compactifications géométriques dans les groupes, les espaces symétriques et les immeubles : Geometric compactifications in groups, symmetric spaces and buildings. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2011PA112324

Chicago Manual of Style (16th Edition):

Haettel, Thomas. “Compactifications géométriques dans les groupes, les espaces symétriques et les immeubles : Geometric compactifications in groups, symmetric spaces and buildings.” 2011. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed August 06, 2020. http://www.theses.fr/2011PA112324.

MLA Handbook (7th Edition):

Haettel, Thomas. “Compactifications géométriques dans les groupes, les espaces symétriques et les immeubles : Geometric compactifications in groups, symmetric spaces and buildings.” 2011. Web. 06 Aug 2020.

Vancouver:

Haettel T. Compactifications géométriques dans les groupes, les espaces symétriques et les immeubles : Geometric compactifications in groups, symmetric spaces and buildings. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2011. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2011PA112324.

Council of Science Editors:

Haettel T. Compactifications géométriques dans les groupes, les espaces symétriques et les immeubles : Geometric compactifications in groups, symmetric spaces and buildings. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2011. Available from: http://www.theses.fr/2011PA112324


Leiden University

14. Zhao, Y. Deformations of nodal surfaces.

Degree: 2016, Leiden University

 In this thesis, we studied the Hodge theory and deformation theory of nodal surfaces. We showed that nodal surfaces in the projective 3-space satisfy the… (more)

Subjects/Keywords: Infinitesimal Torelli theorem; Even nodal surfaces; Mixed Hodge modules; Infinitesimal Torelli theorem; Even nodal surfaces; Mixed Hodge modules

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, Y. (2016). Deformations of nodal surfaces. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/44549

Chicago Manual of Style (16th Edition):

Zhao, Y. “Deformations of nodal surfaces.” 2016. Doctoral Dissertation, Leiden University. Accessed August 06, 2020. http://hdl.handle.net/1887/44549.

MLA Handbook (7th Edition):

Zhao, Y. “Deformations of nodal surfaces.” 2016. Web. 06 Aug 2020.

Vancouver:

Zhao Y. Deformations of nodal surfaces. [Internet] [Doctoral dissertation]. Leiden University; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1887/44549.

Council of Science Editors:

Zhao Y. Deformations of nodal surfaces. [Doctoral Dissertation]. Leiden University; 2016. Available from: http://hdl.handle.net/1887/44549

15. Menegatti, Paolo. Action du groupe de Klein sur une surface K3 : Action of the Klein group on a K3 surface.

Degree: Docteur es, Mathématiques, 2019, Poitiers

L’objet de ce travail est la classification des actions du groupe de Klein G≃(ℤ/2ℤ)² sur une surface K3, X, où G contient une involution non-symplectique… (more)

Subjects/Keywords: Géométrie algébrique complexe; Surfaces K3; Automorphismes; Involutions; Théorème de Torelli; Théorie des réseaux; Isométries; Cohomologie des groupes; Action de groupe; Involutions; Fibrations elliptiques; Groupe de Klein; Complex algebraic geometry; K3 surfaces; Automorphisms; Torelli theorem; Lattice theory; Isometries; Group cohomology; Group actions; Involutions; Elliptic fibrations; Klein group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Menegatti, P. (2019). Action du groupe de Klein sur une surface K3 : Action of the Klein group on a K3 surface. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2019POIT2297

Chicago Manual of Style (16th Edition):

Menegatti, Paolo. “Action du groupe de Klein sur une surface K3 : Action of the Klein group on a K3 surface.” 2019. Doctoral Dissertation, Poitiers. Accessed August 06, 2020. http://www.theses.fr/2019POIT2297.

MLA Handbook (7th Edition):

Menegatti, Paolo. “Action du groupe de Klein sur une surface K3 : Action of the Klein group on a K3 surface.” 2019. Web. 06 Aug 2020.

Vancouver:

Menegatti P. Action du groupe de Klein sur une surface K3 : Action of the Klein group on a K3 surface. [Internet] [Doctoral dissertation]. Poitiers; 2019. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2019POIT2297.

Council of Science Editors:

Menegatti P. Action du groupe de Klein sur une surface K3 : Action of the Klein group on a K3 surface. [Doctoral Dissertation]. Poitiers; 2019. Available from: http://www.theses.fr/2019POIT2297

16. Guan, Feng. Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds.

Degree: Mathematics, 2014, UCLA

 In this thesis, we prove that the Hodge metric completion of the Teichmuller space of polarized and marked Calabi-Yau manifolds is a complex affine manifold.… (more)

Subjects/Keywords: Mathematics; Complex Geometry; Period map; Teichmuller space; Torelli problem

…result and the global Torelli theorem . . . . . . . . . . . . . . . . . . . 56 6.3… …and polarized Calabi-Yau manifold. 1.1 A brief review of the Torelli Problem The Torelli… …back to Riemann. In the year 1914, Torelli asked wether two complex curves are isomorphic if… …reformulated the Torelli problem as follows: Suppose for two Riemann surfaces, there exists an… …the Torelli problem in [1]. Another important achievement about the Torelli… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guan, F. (2014). Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/0r10p1zm

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Guan, Feng. “Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds.” 2014. Thesis, UCLA. Accessed August 06, 2020. http://www.escholarship.org/uc/item/0r10p1zm.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Guan, Feng. “Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds.” 2014. Web. 06 Aug 2020.

Vancouver:

Guan F. Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds. [Internet] [Thesis]. UCLA; 2014. [cited 2020 Aug 06]. Available from: http://www.escholarship.org/uc/item/0r10p1zm.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Guan F. Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/0r10p1zm

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

17. A. Cattaneo. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.

Degree: 2018, Università degli Studi di Milano

La tesi si concentra sullo studio degli automorfismi di varietà olomorfe simplettiche irriducibili di tipo K3^[n], ovvero varietà equivalenti per deformazione allo schema di Hilbert… (more)

Subjects/Keywords: complex algebraic geometry; lattice theory; holomorphic symplectic manifold; Hilbert schemes of points on K3 surfaces; automorphisms; Torelli theorem; moduli spaces; Settore MAT/03 - Geometria

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cattaneo, A. (2018). NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Thesis, Università degli Studi di Milano. Accessed August 06, 2020. http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Web. 06 Aug 2020.

Vancouver:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Internet] [Thesis]. Università degli Studi di Milano; 2018. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Thesis]. Università degli Studi di Milano; 2018. Available from: http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

18. Vautaw, William R. Abelian subgroups and automorphisms of the Torelli group.

Degree: PhD, Department of Mathematics, 2002, Michigan State University

Subjects/Keywords: Class groups (Mathematics); Mappings (Mathematics); Torelli theorem; Abelian groups; Automorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vautaw, W. R. (2002). Abelian subgroups and automorphisms of the Torelli group. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:31379

Chicago Manual of Style (16th Edition):

Vautaw, William R. “Abelian subgroups and automorphisms of the Torelli group.” 2002. Doctoral Dissertation, Michigan State University. Accessed August 06, 2020. http://etd.lib.msu.edu/islandora/object/etd:31379.

MLA Handbook (7th Edition):

Vautaw, William R. “Abelian subgroups and automorphisms of the Torelli group.” 2002. Web. 06 Aug 2020.

Vancouver:

Vautaw WR. Abelian subgroups and automorphisms of the Torelli group. [Internet] [Doctoral dissertation]. Michigan State University; 2002. [cited 2020 Aug 06]. Available from: http://etd.lib.msu.edu/islandora/object/etd:31379.

Council of Science Editors:

Vautaw WR. Abelian subgroups and automorphisms of the Torelli group. [Doctoral Dissertation]. Michigan State University; 2002. Available from: http://etd.lib.msu.edu/islandora/object/etd:31379

19. Cattaneo, Alberto. Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes.

Degree: Docteur es, Mathématiques, 2018, Poitiers; Università degli studi (Milan, Italie)

Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n… (more)

Subjects/Keywords: Géométrie algébrique complexe; Théorie des réseaux; Variétés symplectiques holomorphes; Schémas de Hilbert de points sur les surfaces K3; Automorphismes; Théorème de Torelli; Espaces de modules.; Complex algebraic geometry; Lattice theory; Holomorphic symplectic manifolds; Hilbert schemes of points on K3 surfaces; Automorphisms; Torelli theorem; Moduli spaces.; 516.35; 514.223; 511.326

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cattaneo, A. (2018). Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes. (Doctoral Dissertation). Poitiers; Università degli studi (Milan, Italie). Retrieved from http://www.theses.fr/2018POIT2322

Chicago Manual of Style (16th Edition):

Cattaneo, Alberto. “Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes.” 2018. Doctoral Dissertation, Poitiers; Università degli studi (Milan, Italie). Accessed August 06, 2020. http://www.theses.fr/2018POIT2322.

MLA Handbook (7th Edition):

Cattaneo, Alberto. “Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes.” 2018. Web. 06 Aug 2020.

Vancouver:

Cattaneo A. Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes. [Internet] [Doctoral dissertation]. Poitiers; Università degli studi (Milan, Italie); 2018. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2018POIT2322.

Council of Science Editors:

Cattaneo A. Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes. [Doctoral Dissertation]. Poitiers; Università degli studi (Milan, Italie); 2018. Available from: http://www.theses.fr/2018POIT2322

20. Tari, Kévin. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.

Degree: Docteur es, Mathématiques, 2015, Poitiers

Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action… (more)

Subjects/Keywords: Géométrie algébrique complexe; Variétés symplectiques holomorphes; Variétés de Kummer généralisées; Schémas de Hilbert de points sur les surfaces K3; Automorphismes; Automorphismes naturels; Théorème de Torelli; Surfaces abéliennes; Théorie des réseaux; Isométries; Complex algebraic geometry; Holomorphic symplectic varieties; Generalized Kummer varieties; Hilbert schemes of points on K3 surfaces; Automorphisms; Natural automorphisms; Torelli thoerem; Abelian surfaces; Lattice theory; Isometries; 516.35

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tari, K. (2015). Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2015POIT2301

Chicago Manual of Style (16th Edition):

Tari, Kévin. “Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.” 2015. Doctoral Dissertation, Poitiers. Accessed August 06, 2020. http://www.theses.fr/2015POIT2301.

MLA Handbook (7th Edition):

Tari, Kévin. “Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.” 2015. Web. 06 Aug 2020.

Vancouver:

Tari K. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. [Internet] [Doctoral dissertation]. Poitiers; 2015. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2015POIT2301.

Council of Science Editors:

Tari K. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. [Doctoral Dissertation]. Poitiers; 2015. Available from: http://www.theses.fr/2015POIT2301

.