Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:( Quasi Magnus). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Universitat Politècnica de València

1. Kopylov, Nikita. Magnus-based geometric integrators for dynamical systems with time-dependent potentials .

Degree: 2019, Universitat Politècnica de València

[ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en la física matemática, porque provienen de la mecánica cuántica, clásica y celestial. La meta de la tesis es construir integradores para unos problemas relevantes no autónomos: la ecuación de Schrödinger, que es el fundamento de la mecánica cuántica; las ecuaciones de Hill y de onda, que describen sistemas oscilatorios; el problema de Kepler con la masa variante en el tiempo. El Capítulo 1 describe la motivación y los objetivos de la obra en el contexto histórico de la integración numérica. En el Capítulo 2 se introducen los conceptos esenciales y unas herramientas fundamentales utilizadas a lo largo de la tesis. El diseño de los integradores propuestos se basa en los métodos de composición y escisión y en el desarrollo de Magnus. En el Capítulo 3 se describe el primero. Su idea principal consta de una recombinación de unos integradores sencillos para obtener la solución del problema. El concepto importante de las condiciones de orden se describe en ese capítulo. En el Capítulo 4 se hace un resumen de las álgebras de Lie y del desarrollo de Magnus que son las herramientas algebraicas que permiten expresar la solución de ecuaciones diferenciales dependientes del tiempo. La ecuación lineal de Schrödinger con potencial dependiente del tiempo está examinada en el Capítulo 5. Dado su estructura particular, nuevos métodos casi sin conmutadores, basados en el desarrollo de Magnus, son construidos. Su eficiencia es demostrada en unos experimentos numéricos con el modelo de Walker-Preston de una molécula dentro de un campo electromagnético. En el Capítulo 6, se diseñan los métodos de Magnus-escisión para las ecuaciones de onda y de Hill. Su eficiencia está demostrada en los experimentos numéricos con varios sistemas oscilatorios: con la ecuación de Mathieu, la ec. de Hill matricial, las ecuaciones de onda y de Klein-Gordon-Fock. El Capítulo 7 explica cómo el enfoque algebraico y el desarrollo de Magnus pueden generalizarse a los problemas no lineales. El ejemplo utilizado es el problema de Kepler con masa decreciente. El Capítulo 8 concluye la tesis, reseña los resultados y traza las posibles direcciones de la investigación futura.; [CAT] Aquesta tesi tracta de la integració numèrica de sistemes hamiltonians amb potencials explícitament dependents del temps. Els problemes d'aquest tipus són comuns en la física matemàtica, perquè provenen de la mecànica quàntica, clàssica i celest. L'objectiu de la tesi és construir integradors per a uns problemes rellevants no autònoms: l'equació de Schrödinger, que és el fonament de la mecànica quàntica; les equacions de Hill i d'ona, que descriuen sistemes oscil·latoris; el problema de Kepler amb la massa variant en el temps. El Capítol 1 descriu la motivació i els objectius de l'obra en el context històric de la integració numèrica. En Capítol 2 s'introdueixen els conceptes essencials i unes ferramentes… Advisors/Committee Members: Bader, Philipp Karl Heinz (advisor), Blanes Zamora, Sergio (advisor).

Subjects/Keywords: Numerical analysis; Geometric numerical integration; Symplectic integrator; Structure preservation; Differential equations; Time-dependent; Non-autonomous; Magnus expansion; Splitting methods; Composition methods; Schrödinger equation; Wave equation; Hill equation; Mathieu equation; Kepler problem; Quasi-commutator-free; Quasi-Magnus; Magnus-splitting

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/118798

Chicago Manual of Style (16th Edition):

Kopylov, Nikita. “Magnus-based geometric integrators for dynamical systems with time-dependent potentials .” 2019. Doctoral Dissertation, Universitat Politècnica de València. Accessed October 24, 2020. http://hdl.handle.net/10251/118798.

MLA Handbook (7th Edition):

Kopylov, Nikita. “Magnus-based geometric integrators for dynamical systems with time-dependent potentials .” 2019. Web. 24 Oct 2020.

Vancouver:

Kopylov N. Magnus-based geometric integrators for dynamical systems with time-dependent potentials . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2019. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/10251/118798.

Council of Science Editors:

Kopylov N. Magnus-based geometric integrators for dynamical systems with time-dependent potentials . [Doctoral Dissertation]. Universitat Politècnica de València; 2019. Available from: http://hdl.handle.net/10251/118798

.