Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( Magnus splitting). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Universitat Politècnica de València

1. Kopylov, Nikita. Magnus-based geometric integrators for dynamical systems with time-dependent potentials .

Degree: 2019, Universitat Politècnica de València

 [ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en… (more)

Subjects/Keywords: Numerical analysis; Geometric numerical integration; Symplectic integrator; Structure preservation; Differential equations; Time-dependent; Non-autonomous; Magnus expansion; Splitting methods; Composition methods; Schrödinger equation; Wave equation; Hill equation; Mathieu equation; Kepler problem; Quasi-commutator-free; Quasi-Magnus; Magnus-splitting

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/118798

Chicago Manual of Style (16th Edition):

Kopylov, Nikita. “Magnus-based geometric integrators for dynamical systems with time-dependent potentials .” 2019. Doctoral Dissertation, Universitat Politècnica de València. Accessed October 23, 2020. http://hdl.handle.net/10251/118798.

MLA Handbook (7th Edition):

Kopylov, Nikita. “Magnus-based geometric integrators for dynamical systems with time-dependent potentials .” 2019. Web. 23 Oct 2020.

Vancouver:

Kopylov N. Magnus-based geometric integrators for dynamical systems with time-dependent potentials . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2019. [cited 2020 Oct 23]. Available from: http://hdl.handle.net/10251/118798.

Council of Science Editors:

Kopylov N. Magnus-based geometric integrators for dynamical systems with time-dependent potentials . [Doctoral Dissertation]. Universitat Politècnica de València; 2019. Available from: http://hdl.handle.net/10251/118798


Universitat Politècnica de València

2. Bader, Philipp Karl-Heinz. Geometric Integrators for Schrödinger Equations .

Degree: 2014, Universitat Politècnica de València

 The celebrated Schrödinger equation is the key to understanding the dynamics of quantum mechanical particles and comes in a variety of forms. Its numerical solution… (more)

Subjects/Keywords: Numerical analysis; Geometric integrators; Splitting methods; Magnus expansion; Algebraic techniques; Schrödinger equation; Gross-Piatevskii equation; Semiclassical limit; Imaginary time

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bader, P. K. (2014). Geometric Integrators for Schrödinger Equations . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/38716

Chicago Manual of Style (16th Edition):

Bader, Philipp Karl-Heinz. “Geometric Integrators for Schrödinger Equations .” 2014. Doctoral Dissertation, Universitat Politècnica de València. Accessed October 23, 2020. http://hdl.handle.net/10251/38716.

MLA Handbook (7th Edition):

Bader, Philipp Karl-Heinz. “Geometric Integrators for Schrödinger Equations .” 2014. Web. 23 Oct 2020.

Vancouver:

Bader PK. Geometric Integrators for Schrödinger Equations . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2014. [cited 2020 Oct 23]. Available from: http://hdl.handle.net/10251/38716.

Council of Science Editors:

Bader PK. Geometric Integrators for Schrödinger Equations . [Doctoral Dissertation]. Universitat Politècnica de València; 2014. Available from: http://hdl.handle.net/10251/38716


University of Cambridge

3. Singh, Pranav. High accuracy computational methods for the semiclassical Schrödinger equation.

Degree: PhD, 2018, University of Cambridge

 The computation of Schrödinger equations in the semiclassical regime presents several enduring challenges due to the presence of the small semiclassical parameter. Standard approaches for… (more)

Subjects/Keywords: 515; Semiclassical Schro¨dinger equations; time-dependent potentials; exponential splittings; Zassenhaus splitting; Magnus expansions; Lanczos iterations; Magnus – Zassenhaus schemes; commutator free; high-order methods; asymptotic analysis; Lie algebras; Jordan polynomials; symmetrised differential operators; spectral collocation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Singh, P. (2018). High accuracy computational methods for the semiclassical Schrödinger equation. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.22064 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744691

Chicago Manual of Style (16th Edition):

Singh, Pranav. “High accuracy computational methods for the semiclassical Schrödinger equation.” 2018. Doctoral Dissertation, University of Cambridge. Accessed October 23, 2020. https://doi.org/10.17863/CAM.22064 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744691.

MLA Handbook (7th Edition):

Singh, Pranav. “High accuracy computational methods for the semiclassical Schrödinger equation.” 2018. Web. 23 Oct 2020.

Vancouver:

Singh P. High accuracy computational methods for the semiclassical Schrödinger equation. [Internet] [Doctoral dissertation]. University of Cambridge; 2018. [cited 2020 Oct 23]. Available from: https://doi.org/10.17863/CAM.22064 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744691.

Council of Science Editors:

Singh P. High accuracy computational methods for the semiclassical Schrödinger equation. [Doctoral Dissertation]. University of Cambridge; 2018. Available from: https://doi.org/10.17863/CAM.22064 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744691

4. Singh, Pranav. High accuracy computational methods for the semiclassical Schrödinger equation.

Degree: PhD, 2018, University of Cambridge

 The computation of Schrödinger equations in the semiclassical regime presents several enduring challenges due to the presence of the small semiclassical parameter. Standard approaches for… (more)

Subjects/Keywords: Semiclassical Schrödinger equations; time-dependent potentials; exponential splittings; Zassenhaus splitting; Magnus expansions; Lanczos iterations; Magnus – Zassenhaus schemes; commutator free; high-order methods; asymptotic analysis; Lie algebras; Jordan polynomials; symmetrised differential operators; spectral collocation

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Singh, P. (2018). High accuracy computational methods for the semiclassical Schrödinger equation. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/274913

Chicago Manual of Style (16th Edition):

Singh, Pranav. “High accuracy computational methods for the semiclassical Schrödinger equation.” 2018. Doctoral Dissertation, University of Cambridge. Accessed October 23, 2020. https://www.repository.cam.ac.uk/handle/1810/274913.

MLA Handbook (7th Edition):

Singh, Pranav. “High accuracy computational methods for the semiclassical Schrödinger equation.” 2018. Web. 23 Oct 2020.

Vancouver:

Singh P. High accuracy computational methods for the semiclassical Schrödinger equation. [Internet] [Doctoral dissertation]. University of Cambridge; 2018. [cited 2020 Oct 23]. Available from: https://www.repository.cam.ac.uk/handle/1810/274913.

Council of Science Editors:

Singh P. High accuracy computational methods for the semiclassical Schrödinger equation. [Doctoral Dissertation]. University of Cambridge; 2018. Available from: https://www.repository.cam.ac.uk/handle/1810/274913

.