Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( Kronecker algebra). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Sydney

1. Sodsong, Wasuwee. Parallelization Techniques for Heterogeneous Multicores with Applications .

Degree: 2017, University of Sydney

 In the past decade, graphics processing units (GPUs) have gained wide-spread use as general purpose hardware accelerators. Equipped with several thousand cores, GPUs are suitable… (more)

Subjects/Keywords: Heterogenous multicores; GPU programming; JPEG decoding; Kronecker algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sodsong, W. (2017). Parallelization Techniques for Heterogeneous Multicores with Applications . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/17987

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sodsong, Wasuwee. “Parallelization Techniques for Heterogeneous Multicores with Applications .” 2017. Thesis, University of Sydney. Accessed October 16, 2019. http://hdl.handle.net/2123/17987.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sodsong, Wasuwee. “Parallelization Techniques for Heterogeneous Multicores with Applications .” 2017. Web. 16 Oct 2019.

Vancouver:

Sodsong W. Parallelization Techniques for Heterogeneous Multicores with Applications . [Internet] [Thesis]. University of Sydney; 2017. [cited 2019 Oct 16]. Available from: http://hdl.handle.net/2123/17987.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sodsong W. Parallelization Techniques for Heterogeneous Multicores with Applications . [Thesis]. University of Sydney; 2017. Available from: http://hdl.handle.net/2123/17987

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Vergnerie, Cédric. La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?.

Degree: Docteur es, Philosophie, épistémologie. Histoire des mathématiques, 2017, Sorbonne Paris Cité

Hourya Sinaceur présente dans son ouvrage Corps et Modèles la théorie des caractéristiques de Kronecker comme la fin d’« un cycle d’idées sturmiennes », la… (more)

Subjects/Keywords: Théorie des caractéristiques; Algebra; Kronecker, Leopold; Sturm; Topology; History of mathematics; Picard, Emile; Weber, Heinrich; Theory of characteristics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vergnerie, C. (2017). La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2017USPCC238

Chicago Manual of Style (16th Edition):

Vergnerie, Cédric. “La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?.” 2017. Doctoral Dissertation, Sorbonne Paris Cité. Accessed October 16, 2019. http://www.theses.fr/2017USPCC238.

MLA Handbook (7th Edition):

Vergnerie, Cédric. “La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?.” 2017. Web. 16 Oct 2019.

Vancouver:

Vergnerie C. La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2017. [cited 2019 Oct 16]. Available from: http://www.theses.fr/2017USPCC238.

Council of Science Editors:

Vergnerie C. La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?. [Doctoral Dissertation]. Sorbonne Paris Cité; 2017. Available from: http://www.theses.fr/2017USPCC238


University of Waterloo

3. Haraldson, Joseph. Matrix Polynomials and their Lower Rank Approximations.

Degree: 2019, University of Waterloo

 This thesis is a wide ranging work on computing a “lower-rank” approximation of a matrix polynomial using second-order non-linear optimization techniques. Two notions of rank… (more)

Subjects/Keywords: numerical linear algebra; optimization; matrix polynomial; eigenvalue; gcd; low rank; low rank approximation; polynomial eigenvalue; matrix pencil; smith form; kronecker form; kernel; matrix pencil; approximate gcd

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haraldson, J. (2019). Matrix Polynomials and their Lower Rank Approximations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/14847

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Haraldson, Joseph. “Matrix Polynomials and their Lower Rank Approximations.” 2019. Thesis, University of Waterloo. Accessed October 16, 2019. http://hdl.handle.net/10012/14847.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Haraldson, Joseph. “Matrix Polynomials and their Lower Rank Approximations.” 2019. Web. 16 Oct 2019.

Vancouver:

Haraldson J. Matrix Polynomials and their Lower Rank Approximations. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2019 Oct 16]. Available from: http://hdl.handle.net/10012/14847.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Haraldson J. Matrix Polynomials and their Lower Rank Approximations. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/14847

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Constable, Jonathan A. Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares.

Degree: 2016, University of Kentucky

 In 1883 Leopold Kronecker published a paper containing “a few explanatory remarks” to an earlier paper of his from 1866. His work loosely connected the… (more)

Subjects/Keywords: complete equivalence; binary bilinear forms; binary quadratic forms; class number relations; L. Kronecker; Gauss; Algebra; Number Theory

…Bilinear Forms with . . . . . . . . . . . . 114 114 118 124 Chapter 3 Kronecker Reduced… …extensively. A lesser known paper by Leopold Kronecker in 1883 [Kr1897] contains a novel… …develop materials to aid our understanding of Kronecker reduced bilinear forms. Notable results… …include showing there are finitely many Kronecker reduced forms for a given determinant (… …Theorem 3.1.15), and proving a fundamental claim of Kronecker’s - that we may use Kronecker… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Constable, J. A. (2016). Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/35

Chicago Manual of Style (16th Edition):

Constable, Jonathan A. “Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares.” 2016. Doctoral Dissertation, University of Kentucky. Accessed October 16, 2019. https://uknowledge.uky.edu/math_etds/35.

MLA Handbook (7th Edition):

Constable, Jonathan A. “Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares.” 2016. Web. 16 Oct 2019.

Vancouver:

Constable JA. Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares. [Internet] [Doctoral dissertation]. University of Kentucky; 2016. [cited 2019 Oct 16]. Available from: https://uknowledge.uky.edu/math_etds/35.

Council of Science Editors:

Constable JA. Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares. [Doctoral Dissertation]. University of Kentucky; 2016. Available from: https://uknowledge.uky.edu/math_etds/35

.