Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:( Kronecker algebra)`

.
Showing records 1 – 4 of
4 total matches.

▼ Search Limiters

University of Sydney

1. Sodsong, Wasuwee. Parallelization Techniques for Heterogeneous Multicores with Applications .

Degree: 2017, University of Sydney

URL: http://hdl.handle.net/2123/17987

► In the past decade, graphics processing units (GPUs) have gained wide-spread use as general purpose hardware accelerators. Equipped with several thousand cores, GPUs are suitable…
(more)

Subjects/Keywords: Heterogenous multicores; GPU programming; JPEG decoding; Kronecker algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sodsong, W. (2017). Parallelization Techniques for Heterogeneous Multicores with Applications . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/17987

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sodsong, Wasuwee. “Parallelization Techniques for Heterogeneous Multicores with Applications .” 2017. Thesis, University of Sydney. Accessed October 16, 2019. http://hdl.handle.net/2123/17987.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sodsong, Wasuwee. “Parallelization Techniques for Heterogeneous Multicores with Applications .” 2017. Web. 16 Oct 2019.

Vancouver:

Sodsong W. Parallelization Techniques for Heterogeneous Multicores with Applications . [Internet] [Thesis]. University of Sydney; 2017. [cited 2019 Oct 16]. Available from: http://hdl.handle.net/2123/17987.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sodsong W. Parallelization Techniques for Heterogeneous Multicores with Applications . [Thesis]. University of Sydney; 2017. Available from: http://hdl.handle.net/2123/17987

Not specified: Masters Thesis or Doctoral Dissertation

2.
Vergnerie, Cédric.
La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de *Kronecker* : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of *Kronecker* : the end of the cycle of Sturmian ideas?.

Degree: Docteur es, Philosophie, épistémologie. Histoire des mathématiques, 2017, Sorbonne Paris Cité

URL: http://www.theses.fr/2017USPCC238

►

Hourya Sinaceur présente dans son ouvrage Corps et Modèles la théorie des caractéristiques de *Kronecker* comme la ﬁn d’« un cycle d’idées sturmiennes », la…
(more)

Subjects/Keywords: Théorie des caractéristiques; Algebra; Kronecker, Leopold; Sturm; Topology; History of mathematics; Picard, Emile; Weber, Heinrich; Theory of characteristics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vergnerie, C. (2017). La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2017USPCC238

Chicago Manual of Style (16^{th} Edition):

Vergnerie, Cédric. “La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?.” 2017. Doctoral Dissertation, Sorbonne Paris Cité. Accessed October 16, 2019. http://www.theses.fr/2017USPCC238.

MLA Handbook (7^{th} Edition):

Vergnerie, Cédric. “La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?.” 2017. Web. 16 Oct 2019.

Vancouver:

Vergnerie C. La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2017. [cited 2019 Oct 16]. Available from: http://www.theses.fr/2017USPCC238.

Council of Science Editors:

Vergnerie C. La théorie des caractéristiques dans les Vorlesungen über die Theorie der algebraischen Gleichungen de Kronecker : la fin du cycle d’idées sturmiennes ? : The theory of characteristics in the Vorlesungen über die Theorie der algebraischen Gleichungen of Kronecker : the end of the cycle of Sturmian ideas?. [Doctoral Dissertation]. Sorbonne Paris Cité; 2017. Available from: http://www.theses.fr/2017USPCC238

University of Waterloo

3. Haraldson, Joseph. Matrix Polynomials and their Lower Rank Approximations.

Degree: 2019, University of Waterloo

URL: http://hdl.handle.net/10012/14847

► This thesis is a wide ranging work on computing a “lower-rank” approximation of a matrix polynomial using second-order non-linear optimization techniques. Two notions of rank…
(more)

Subjects/Keywords: numerical linear algebra; optimization; matrix polynomial; eigenvalue; gcd; low rank; low rank approximation; polynomial eigenvalue; matrix pencil; smith form; kronecker form; kernel; matrix pencil; approximate gcd

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Haraldson, J. (2019). Matrix Polynomials and their Lower Rank Approximations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/14847

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Haraldson, Joseph. “Matrix Polynomials and their Lower Rank Approximations.” 2019. Thesis, University of Waterloo. Accessed October 16, 2019. http://hdl.handle.net/10012/14847.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Haraldson, Joseph. “Matrix Polynomials and their Lower Rank Approximations.” 2019. Web. 16 Oct 2019.

Vancouver:

Haraldson J. Matrix Polynomials and their Lower Rank Approximations. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2019 Oct 16]. Available from: http://hdl.handle.net/10012/14847.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Haraldson J. Matrix Polynomials and their Lower Rank Approximations. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/14847

Not specified: Masters Thesis or Doctoral Dissertation

4.
Constable, Jonathan A.
* Kronecker*'s Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares.

Degree: 2016, University of Kentucky

URL: https://uknowledge.uky.edu/math_etds/35

► In 1883 Leopold *Kronecker* published a paper containing “a few explanatory remarks” to an earlier paper of his from 1866. His work loosely connected the…
(more)

Subjects/Keywords: complete equivalence; binary bilinear forms; binary quadratic forms; class number relations; L. Kronecker; Gauss; Algebra; Number Theory

…Bilinear Forms with
. . . . . . . . . . . .
114
114
118
124
Chapter 3 *Kronecker* Reduced… …extensively. A lesser known paper by Leopold *Kronecker*
in 1883 [Kr1897] contains a novel… …develop materials to aid our understanding of *Kronecker* reduced bilinear forms. Notable
results… …include showing there are finitely many *Kronecker* reduced forms for a given
determinant (… …Theorem 3.1.15), and proving a fundamental claim of Kronecker’s - that
we may use *Kronecker*…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Constable, J. A. (2016). Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/35

Chicago Manual of Style (16^{th} Edition):

Constable, Jonathan A. “Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares.” 2016. Doctoral Dissertation, University of Kentucky. Accessed October 16, 2019. https://uknowledge.uky.edu/math_etds/35.

MLA Handbook (7^{th} Edition):

Constable, Jonathan A. “Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares.” 2016. Web. 16 Oct 2019.

Vancouver:

Constable JA. Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares. [Internet] [Doctoral dissertation]. University of Kentucky; 2016. [cited 2019 Oct 16]. Available from: https://uknowledge.uky.edu/math_etds/35.

Council of Science Editors:

Constable JA. Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares. [Doctoral Dissertation]. University of Kentucky; 2016. Available from: https://uknowledge.uky.edu/math_etds/35