Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( Homotopietheorie). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Ruhr Universität Bochum

1. Schumann, Norman. K(2)-local power operations in Lubin-Tate cohomology.

Degree: 2014, Ruhr Universität Bochum

 Die vorliegende Arbeit beschäftigt sich mit der Berechnung von Potenzoperationen spezieller Kohomologietheorien. Für eine beliebige universelle Deformation der elliptischen Kure y2+ y = x3über FF2… (more)

Subjects/Keywords: Topologie; Kohomologie; Deformation (Mathematik); Homotopietheorie; Operation (Mathematik)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schumann, N. (2014). K(2)-local power operations in Lubin-Tate cohomology. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41510

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schumann, Norman. “K(2)-local power operations in Lubin-Tate cohomology.” 2014. Thesis, Ruhr Universität Bochum. Accessed November 17, 2019. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41510.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schumann, Norman. “K(2)-local power operations in Lubin-Tate cohomology.” 2014. Web. 17 Nov 2019.

Vancouver:

Schumann N. K(2)-local power operations in Lubin-Tate cohomology. [Internet] [Thesis]. Ruhr Universität Bochum; 2014. [cited 2019 Nov 17]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41510.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schumann N. K(2)-local power operations in Lubin-Tate cohomology. [Thesis]. Ruhr Universität Bochum; 2014. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-41510

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Ruhr Universität Bochum

2. Möllers, Jan-David. K(1)-local complex E∞-orientations.

Degree: 2010, Ruhr Universität Bochum

 In dieser Dissertation werden K(1)-lokale komplexe E_unendlich Orientierungen und H_unendlich Orientierungen untersucht (E_unendlich Abbildungen vom komplexen Kobordismenspektrum in ein K(1)-lokales E_unendlich Spektrum). Das Hauptresultat liefert… (more)

Subjects/Keywords: Algebraische Topologie; Stabile Homotopietheorie; Dimension unendlich; Bernoullische Zahl

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Möllers, J. (2010). K(1)-local complex E∞-orientations. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Möllers, Jan-David. “K(1)-local complex E∞-orientations.” 2010. Thesis, Ruhr Universität Bochum. Accessed November 17, 2019. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Möllers, Jan-David. “K(1)-local complex E∞-orientations.” 2010. Web. 17 Nov 2019.

Vancouver:

Möllers J. K(1)-local complex E∞-orientations. [Internet] [Thesis]. Ruhr Universität Bochum; 2010. [cited 2019 Nov 17]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Möllers J. K(1)-local complex E∞-orientations. [Thesis]. Ruhr Universität Bochum; 2010. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

3. Fatt, Milton Jacob. On the homotopical approach to algebraic topology and the Hurewicz theorem.

Degree: 1963, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fatt, M. J. (1963). On the homotopical approach to algebraic topology and the Hurewicz theorem. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131384

Chicago Manual of Style (16th Edition):

Fatt, Milton Jacob. “On the homotopical approach to algebraic topology and the Hurewicz theorem.” 1963. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/131384.

MLA Handbook (7th Edition):

Fatt, Milton Jacob. “On the homotopical approach to algebraic topology and the Hurewicz theorem.” 1963. Web. 17 Nov 2019.

Vancouver:

Fatt MJ. On the homotopical approach to algebraic topology and the Hurewicz theorem. [Internet] [Doctoral dissertation]. ETH Zürich; 1963. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/131384.

Council of Science Editors:

Fatt MJ. On the homotopical approach to algebraic topology and the Hurewicz theorem. [Doctoral Dissertation]. ETH Zürich; 1963. Available from: http://hdl.handle.net/20.500.11850/131384


ETH Zürich

4. Meier, Werner. Beiträge zur algebraischen Homotopietheorie der Moduln.

Degree: 1962, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meier, W. (1962). Beiträge zur algebraischen Homotopietheorie der Moduln. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131688

Chicago Manual of Style (16th Edition):

Meier, Werner. “Beiträge zur algebraischen Homotopietheorie der Moduln.” 1962. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/131688.

MLA Handbook (7th Edition):

Meier, Werner. “Beiträge zur algebraischen Homotopietheorie der Moduln.” 1962. Web. 17 Nov 2019.

Vancouver:

Meier W. Beiträge zur algebraischen Homotopietheorie der Moduln. [Internet] [Doctoral dissertation]. ETH Zürich; 1962. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/131688.

Council of Science Editors:

Meier W. Beiträge zur algebraischen Homotopietheorie der Moduln. [Doctoral Dissertation]. ETH Zürich; 1962. Available from: http://hdl.handle.net/20.500.11850/131688


ETH Zürich

5. Thöni, Werner. Aequivariante Homotopie und Cohomologie.

Degree: 1964, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); KOHOMOLOGIE-OPERATIONEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); COHOMOLOGY OPERATIONS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thöni, W. (1964). Aequivariante Homotopie und Cohomologie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132448

Chicago Manual of Style (16th Edition):

Thöni, Werner. “Aequivariante Homotopie und Cohomologie.” 1964. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/132448.

MLA Handbook (7th Edition):

Thöni, Werner. “Aequivariante Homotopie und Cohomologie.” 1964. Web. 17 Nov 2019.

Vancouver:

Thöni W. Aequivariante Homotopie und Cohomologie. [Internet] [Doctoral dissertation]. ETH Zürich; 1964. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/132448.

Council of Science Editors:

Thöni W. Aequivariante Homotopie und Cohomologie. [Doctoral Dissertation]. ETH Zürich; 1964. Available from: http://hdl.handle.net/20.500.11850/132448


ETH Zürich

6. Eckmann, Beno. Zur Homotopietheorie gefaserter Räume.

Degree: 1941, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eckmann, B. (1941). Zur Homotopietheorie gefaserter Räume. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133370

Chicago Manual of Style (16th Edition):

Eckmann, Beno. “Zur Homotopietheorie gefaserter Räume.” 1941. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/133370.

MLA Handbook (7th Edition):

Eckmann, Beno. “Zur Homotopietheorie gefaserter Räume.” 1941. Web. 17 Nov 2019.

Vancouver:

Eckmann B. Zur Homotopietheorie gefaserter Räume. [Internet] [Doctoral dissertation]. ETH Zürich; 1941. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/133370.

Council of Science Editors:

Eckmann B. Zur Homotopietheorie gefaserter Räume. [Doctoral Dissertation]. ETH Zürich; 1941. Available from: http://hdl.handle.net/20.500.11850/133370


ETH Zürich

7. Specker, Ernst P. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.

Degree: 1949, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); DREIDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); THREE-DIMENSIONAL MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Specker, E. P. (1949). Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133460

Chicago Manual of Style (16th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/133460.

MLA Handbook (7th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Web. 17 Nov 2019.

Vancouver:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Internet] [Doctoral dissertation]. ETH Zürich; 1949. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/133460.

Council of Science Editors:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Doctoral Dissertation]. ETH Zürich; 1949. Available from: http://hdl.handle.net/20.500.11850/133460


ETH Zürich

8. Campos, Ricardo. Batalin-Vilkovisky formality and configuration spaces of points.

Degree: 2017, ETH Zürich

Subjects/Keywords: DIFFERENTIALFORMEN AUF GLATTEN MANNIGFALTIGKEITEN (TOPOLOGIE); GLATTE MANNIGFALTIGKEITEN MIT ZUSÄTZLICHER STRUKTUR (TOPOLOGIE); OPERADE (MATHEMATIK); HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); DIFFERENTIAL FORMS ON SMOOTH MANIFOLDS (TOPOLOGY); SMOOTH MANIFOLDS WITH ADDITIONAL STRUCTURE (TOPOLOGY); OPERADS (MATHEMATICS); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Campos, R. (2017). Batalin-Vilkovisky formality and configuration spaces of points. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/156310

Chicago Manual of Style (16th Edition):

Campos, Ricardo. “Batalin-Vilkovisky formality and configuration spaces of points.” 2017. Doctoral Dissertation, ETH Zürich. Accessed November 17, 2019. http://hdl.handle.net/20.500.11850/156310.

MLA Handbook (7th Edition):

Campos, Ricardo. “Batalin-Vilkovisky formality and configuration spaces of points.” 2017. Web. 17 Nov 2019.

Vancouver:

Campos R. Batalin-Vilkovisky formality and configuration spaces of points. [Internet] [Doctoral dissertation]. ETH Zürich; 2017. [cited 2019 Nov 17]. Available from: http://hdl.handle.net/20.500.11850/156310.

Council of Science Editors:

Campos R. Batalin-Vilkovisky formality and configuration spaces of points. [Doctoral Dissertation]. ETH Zürich; 2017. Available from: http://hdl.handle.net/20.500.11850/156310

.