Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:( Class number). Showing records 1 – 30 of 52 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Country

▼ Search Limiters


University of Colorado

1. Feaver, A.F. Amy. Euclid's Algorithm in Multiquadratic Fields.

Degree: PhD, Mathematics, 2014, University of Colorado

  In this thesis we find that all imaginary n-quadratic fields with n>3 have class number larger than 1 and therefore cannot be Euclidean. We… (more)

Subjects/Keywords: Class Number; Euclidean Rings; Number Fields; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Feaver, A. F. A. (2014). Euclid's Algorithm in Multiquadratic Fields. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/30

Chicago Manual of Style (16th Edition):

Feaver, A F Amy. “Euclid's Algorithm in Multiquadratic Fields.” 2014. Doctoral Dissertation, University of Colorado. Accessed June 07, 2020. https://scholar.colorado.edu/math_gradetds/30.

MLA Handbook (7th Edition):

Feaver, A F Amy. “Euclid's Algorithm in Multiquadratic Fields.” 2014. Web. 07 Jun 2020.

Vancouver:

Feaver AFA. Euclid's Algorithm in Multiquadratic Fields. [Internet] [Doctoral dissertation]. University of Colorado; 2014. [cited 2020 Jun 07]. Available from: https://scholar.colorado.edu/math_gradetds/30.

Council of Science Editors:

Feaver AFA. Euclid's Algorithm in Multiquadratic Fields. [Doctoral Dissertation]. University of Colorado; 2014. Available from: https://scholar.colorado.edu/math_gradetds/30


University of Southern California

2. Berry, Christopher D. The class number formula.

Degree: MA, Mathematics, 2012, University of Southern California

 The analytic class number formula equates the residue of a dedekind zeta function at 1 with various properties of a related number field. These properties… (more)

Subjects/Keywords: analytic class number formula; class number; class number formula; number field; principal ideal domain; zeta function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Berry, C. D. (2012). The class number formula. (Masters Thesis). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/1542/rec/6513

Chicago Manual of Style (16th Edition):

Berry, Christopher D. “The class number formula.” 2012. Masters Thesis, University of Southern California. Accessed June 07, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/1542/rec/6513.

MLA Handbook (7th Edition):

Berry, Christopher D. “The class number formula.” 2012. Web. 07 Jun 2020.

Vancouver:

Berry CD. The class number formula. [Internet] [Masters thesis]. University of Southern California; 2012. [cited 2020 Jun 07]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/1542/rec/6513.

Council of Science Editors:

Berry CD. The class number formula. [Masters Thesis]. University of Southern California; 2012. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/1542/rec/6513


University of Sydney

3. Zhang, Yinan. p-adic Verification of Class Number Computations .

Degree: 2013, University of Sydney

 The aim of this thesis is to determine if it is possible, using p-adic techniques, to unconditionally evaluate the p-valuation of the class number h… (more)

Subjects/Keywords: class number computation; p-adic L-function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, Y. (2013). p-adic Verification of Class Number Computations . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/9821

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhang, Yinan. “p-adic Verification of Class Number Computations .” 2013. Thesis, University of Sydney. Accessed June 07, 2020. http://hdl.handle.net/2123/9821.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhang, Yinan. “p-adic Verification of Class Number Computations .” 2013. Web. 07 Jun 2020.

Vancouver:

Zhang Y. p-adic Verification of Class Number Computations . [Internet] [Thesis]. University of Sydney; 2013. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/2123/9821.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhang Y. p-adic Verification of Class Number Computations . [Thesis]. University of Sydney; 2013. Available from: http://hdl.handle.net/2123/9821

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

4. Klys, Jack. Statistics of class groups and related topics.

Degree: PhD, 2017, University of Toronto

 We prove several results concering class groups of number fields and function fields. Firstly we compute all the moments of the p-torsion in the first… (more)

Subjects/Keywords: Arithmetic statistics; Class groups; Cohen-Lenstra heuristics; Number fields; Number theory; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Klys, J. (2017). Statistics of class groups and related topics. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/79031

Chicago Manual of Style (16th Edition):

Klys, Jack. “Statistics of class groups and related topics.” 2017. Doctoral Dissertation, University of Toronto. Accessed June 07, 2020. http://hdl.handle.net/1807/79031.

MLA Handbook (7th Edition):

Klys, Jack. “Statistics of class groups and related topics.” 2017. Web. 07 Jun 2020.

Vancouver:

Klys J. Statistics of class groups and related topics. [Internet] [Doctoral dissertation]. University of Toronto; 2017. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1807/79031.

Council of Science Editors:

Klys J. Statistics of class groups and related topics. [Doctoral Dissertation]. University of Toronto; 2017. Available from: http://hdl.handle.net/1807/79031

5. Bond, Jacob. The Stickelberger Ideal and the Cyclotomic Class Number.

Degree: MS, Mathematics, 2013, The Ohio State University

 The ideal class group is an important object in the study of algebraic number fields, as is the associated class number. In cyclotomic fields in… (more)

Subjects/Keywords: Mathematics; Stickelberger; class number

class number, h− , and the minus part of the Stickelberger ideal, I− . Following Iwasawa, it… …deriving the analytic class number formula. To begin, let σ1 , σ2 , . . . , σr1 be the real… …result which will later be used in the process of establishing the analytic class number… …where f and g are the residue class degree and the number of primes lying above p in k. Proof… …result will be central to the determination of a formula for the class number. ([3… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bond, J. (2013). The Stickelberger Ideal and the Cyclotomic Class Number. (Masters Thesis). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371004

Chicago Manual of Style (16th Edition):

Bond, Jacob. “The Stickelberger Ideal and the Cyclotomic Class Number.” 2013. Masters Thesis, The Ohio State University. Accessed June 07, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371004.

MLA Handbook (7th Edition):

Bond, Jacob. “The Stickelberger Ideal and the Cyclotomic Class Number.” 2013. Web. 07 Jun 2020.

Vancouver:

Bond J. The Stickelberger Ideal and the Cyclotomic Class Number. [Internet] [Masters thesis]. The Ohio State University; 2013. [cited 2020 Jun 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371004.

Council of Science Editors:

Bond J. The Stickelberger Ideal and the Cyclotomic Class Number. [Masters Thesis]. The Ohio State University; 2013. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371004


University of Toronto

6. Love, Jonathan Richard. Field Extensions Generated by Kernels of Isogenies.

Degree: 2016, University of Toronto

Given an odd prime p, A technique due to Jean-Fran\c{c}ois Mestre allows one to construct infinitely many quadratic fields for which the ideal class group… (more)

Subjects/Keywords: class number; elliptic curve; field extension; isogeny; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Love, J. R. (2016). Field Extensions Generated by Kernels of Isogenies. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/75337

Chicago Manual of Style (16th Edition):

Love, Jonathan Richard. “Field Extensions Generated by Kernels of Isogenies.” 2016. Masters Thesis, University of Toronto. Accessed June 07, 2020. http://hdl.handle.net/1807/75337.

MLA Handbook (7th Edition):

Love, Jonathan Richard. “Field Extensions Generated by Kernels of Isogenies.” 2016. Web. 07 Jun 2020.

Vancouver:

Love JR. Field Extensions Generated by Kernels of Isogenies. [Internet] [Masters thesis]. University of Toronto; 2016. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1807/75337.

Council of Science Editors:

Love JR. Field Extensions Generated by Kernels of Isogenies. [Masters Thesis]. University of Toronto; 2016. Available from: http://hdl.handle.net/1807/75337


University of Arizona

7. McLeman, Cameron William. A Golod-Shafarevich Equality and p-Tower Groups .

Degree: 2008, University of Arizona

 Let K be a quadratic imaginary number field, let Kp^(infinity) the top of its p-class field tower for p an odd prime, and let G=Gal(Kp^(infinity)/K).… (more)

Subjects/Keywords: number theory; class field towers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McLeman, C. W. (2008). A Golod-Shafarevich Equality and p-Tower Groups . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/194026

Chicago Manual of Style (16th Edition):

McLeman, Cameron William. “A Golod-Shafarevich Equality and p-Tower Groups .” 2008. Doctoral Dissertation, University of Arizona. Accessed June 07, 2020. http://hdl.handle.net/10150/194026.

MLA Handbook (7th Edition):

McLeman, Cameron William. “A Golod-Shafarevich Equality and p-Tower Groups .” 2008. Web. 07 Jun 2020.

Vancouver:

McLeman CW. A Golod-Shafarevich Equality and p-Tower Groups . [Internet] [Doctoral dissertation]. University of Arizona; 2008. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10150/194026.

Council of Science Editors:

McLeman CW. A Golod-Shafarevich Equality and p-Tower Groups . [Doctoral Dissertation]. University of Arizona; 2008. Available from: http://hdl.handle.net/10150/194026

8. NC DOCKS at The University of North Carolina at Greensboro; Sinclair, Brian. Algorithms for enumerating invariants and extensions of local fields.

Degree: 2015, NC Docks

 There are many computationally difficult problems in the study of p-adic fields, among them the classification of field extensions and the decomposition of global ideals.… (more)

Subjects/Keywords: Class field theory; p-adic fields; Number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

NC DOCKS at The University of North Carolina at Greensboro; Sinclair, B. (2015). Algorithms for enumerating invariants and extensions of local fields. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Sinclair_uncg_0154D_11665.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

NC DOCKS at The University of North Carolina at Greensboro; Sinclair, Brian. “Algorithms for enumerating invariants and extensions of local fields.” 2015. Thesis, NC Docks. Accessed June 07, 2020. http://libres.uncg.edu/ir/uncg/f/Sinclair_uncg_0154D_11665.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

NC DOCKS at The University of North Carolina at Greensboro; Sinclair, Brian. “Algorithms for enumerating invariants and extensions of local fields.” 2015. Web. 07 Jun 2020.

Vancouver:

NC DOCKS at The University of North Carolina at Greensboro; Sinclair B. Algorithms for enumerating invariants and extensions of local fields. [Internet] [Thesis]. NC Docks; 2015. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/uncg/f/Sinclair_uncg_0154D_11665.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

NC DOCKS at The University of North Carolina at Greensboro; Sinclair B. Algorithms for enumerating invariants and extensions of local fields. [Thesis]. NC Docks; 2015. Available from: http://libres.uncg.edu/ir/uncg/f/Sinclair_uncg_0154D_11665.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Southern California

9. Narayanan, Anand Kumar. Computation of class groups and residue class rings of function fields over finite fields.

Degree: PhD, Computer Science, 2014, University of Southern California

 We study the computation of the structure of two finite abelian groups associated with function fields over finite fields: the degree zero divisor class group… (more)

Subjects/Keywords: number theory; computational number theory; function fields; finite fields; primitive elements; polynomial factorization; divisor class group; Stark units

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Narayanan, A. K. (2014). Computation of class groups and residue class rings of function fields over finite fields. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/451911/rec/1538

Chicago Manual of Style (16th Edition):

Narayanan, Anand Kumar. “Computation of class groups and residue class rings of function fields over finite fields.” 2014. Doctoral Dissertation, University of Southern California. Accessed June 07, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/451911/rec/1538.

MLA Handbook (7th Edition):

Narayanan, Anand Kumar. “Computation of class groups and residue class rings of function fields over finite fields.” 2014. Web. 07 Jun 2020.

Vancouver:

Narayanan AK. Computation of class groups and residue class rings of function fields over finite fields. [Internet] [Doctoral dissertation]. University of Southern California; 2014. [cited 2020 Jun 07]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/451911/rec/1538.

Council of Science Editors:

Narayanan AK. Computation of class groups and residue class rings of function fields over finite fields. [Doctoral Dissertation]. University of Southern California; 2014. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/451911/rec/1538


University of Western Ontario

10. Ataei Jaliseh, Masoud. Galois 2-Extensions.

Degree: 2015, University of Western Ontario

 The inverse Galois problem is a major question in mathematics. For a given base field and a given finite group G, one would like to… (more)

Subjects/Keywords: Galois Theory; Class Field Theory; Massey Products; Galois Extensions of Local Fields.; Algebra; Number Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ataei Jaliseh, M. (2015). Galois 2-Extensions. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3381

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ataei Jaliseh, Masoud. “Galois 2-Extensions.” 2015. Thesis, University of Western Ontario. Accessed June 07, 2020. https://ir.lib.uwo.ca/etd/3381.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ataei Jaliseh, Masoud. “Galois 2-Extensions.” 2015. Web. 07 Jun 2020.

Vancouver:

Ataei Jaliseh M. Galois 2-Extensions. [Internet] [Thesis]. University of Western Ontario; 2015. [cited 2020 Jun 07]. Available from: https://ir.lib.uwo.ca/etd/3381.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ataei Jaliseh M. Galois 2-Extensions. [Thesis]. University of Western Ontario; 2015. Available from: https://ir.lib.uwo.ca/etd/3381

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

11. Lin , Cheng-Wei. D-optimal designs for binary response models in mixture experiments.

Degree: Master, Applied Mathematics, 2014, NSYSU

 ããIn this work, D-optimal designs for binary response models in mixture experiments are discussed. This kind of model setting occurs in many chemical experiments. Under… (more)

Subjects/Keywords: reduced number of optimal supports; Tchebycheff Systems; Essentially complete class of designs; restricted design space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lin , C. (2014). D-optimal designs for binary response models in mixture experiments. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0416113-143906

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lin , Cheng-Wei. “D-optimal designs for binary response models in mixture experiments.” 2014. Thesis, NSYSU. Accessed June 07, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0416113-143906.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lin , Cheng-Wei. “D-optimal designs for binary response models in mixture experiments.” 2014. Web. 07 Jun 2020.

Vancouver:

Lin C. D-optimal designs for binary response models in mixture experiments. [Internet] [Thesis]. NSYSU; 2014. [cited 2020 Jun 07]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0416113-143906.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lin C. D-optimal designs for binary response models in mixture experiments. [Thesis]. NSYSU; 2014. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0416113-143906

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Santa Cruz

12. Ferrara, Joseph William. Stark's Conjectures for p-adic L-functions.

Degree: Mathematics, 2018, University of California – Santa Cruz

 We give a new definition of a p-adic L-function for a mixed signature character of a real quadratic field and for a nontrivial ray class(more)

Subjects/Keywords: Mathematics; class field theory; L-functions; number theory; p-adic; Stark's Conjectures; units

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferrara, J. W. (2018). Stark's Conjectures for p-adic L-functions. (Thesis). University of California – Santa Cruz. Retrieved from http://www.escholarship.org/uc/item/4qv5b8tz

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ferrara, Joseph William. “Stark's Conjectures for p-adic L-functions.” 2018. Thesis, University of California – Santa Cruz. Accessed June 07, 2020. http://www.escholarship.org/uc/item/4qv5b8tz.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ferrara, Joseph William. “Stark's Conjectures for p-adic L-functions.” 2018. Web. 07 Jun 2020.

Vancouver:

Ferrara JW. Stark's Conjectures for p-adic L-functions. [Internet] [Thesis]. University of California – Santa Cruz; 2018. [cited 2020 Jun 07]. Available from: http://www.escholarship.org/uc/item/4qv5b8tz.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ferrara JW. Stark's Conjectures for p-adic L-functions. [Thesis]. University of California – Santa Cruz; 2018. Available from: http://www.escholarship.org/uc/item/4qv5b8tz

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

13. Dahl, Alexander Oswald. On Moments of Class Numbers of Real Quadratic Fields.

Degree: 2010, University of Toronto

Class numbers of algebraic number fields are central invariants. Once the underlying field has an infinite unit group they behave very irregularly due to a… (more)

Subjects/Keywords: analytic number theory; real quadratic fields; binary quadratic forms; class group moments; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dahl, A. O. (2010). On Moments of Class Numbers of Real Quadratic Fields. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/24553

Chicago Manual of Style (16th Edition):

Dahl, Alexander Oswald. “On Moments of Class Numbers of Real Quadratic Fields.” 2010. Masters Thesis, University of Toronto. Accessed June 07, 2020. http://hdl.handle.net/1807/24553.

MLA Handbook (7th Edition):

Dahl, Alexander Oswald. “On Moments of Class Numbers of Real Quadratic Fields.” 2010. Web. 07 Jun 2020.

Vancouver:

Dahl AO. On Moments of Class Numbers of Real Quadratic Fields. [Internet] [Masters thesis]. University of Toronto; 2010. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1807/24553.

Council of Science Editors:

Dahl AO. On Moments of Class Numbers of Real Quadratic Fields. [Masters Thesis]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/24553


Queens University

14. Droll, Andrew. Variations of Li's criterion for an extension of the Selberg class="hilite">class .

Degree: Mathematics and Statistics, 2012, Queens University

 In 1997, Xian-Jin Li gave an equivalence to the classical Riemann hypothesis, now referred to as Li's criterion, in terms of the non-negativity of a… (more)

Subjects/Keywords: Selberg class; Li's criterion; GRH; RH; Number Theory; zero-free regions; arithmetic formulae; Riemann hypothesis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Droll, A. (2012). Variations of Li's criterion for an extension of the Selberg class . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/7352

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Droll, Andrew. “Variations of Li's criterion for an extension of the Selberg class .” 2012. Thesis, Queens University. Accessed June 07, 2020. http://hdl.handle.net/1974/7352.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Droll, Andrew. “Variations of Li's criterion for an extension of the Selberg class .” 2012. Web. 07 Jun 2020.

Vancouver:

Droll A. Variations of Li's criterion for an extension of the Selberg class . [Internet] [Thesis]. Queens University; 2012. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1974/7352.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Droll A. Variations of Li's criterion for an extension of the Selberg class . [Thesis]. Queens University; 2012. Available from: http://hdl.handle.net/1974/7352

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

15. Theusch, Colleen Joan, 1932-. Determination of the Hilbert Class Field for certain algebraic number fields.

Degree: PhD, Department of Mathematics, 1971, Michigan State University

Subjects/Keywords: Algebraic number theory; Class field theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Theusch, Colleen Joan, 1. (1971). Determination of the Hilbert Class Field for certain algebraic number fields. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:37021

Chicago Manual of Style (16th Edition):

Theusch, Colleen Joan, 1932-. “Determination of the Hilbert Class Field for certain algebraic number fields.” 1971. Doctoral Dissertation, Michigan State University. Accessed June 07, 2020. http://etd.lib.msu.edu/islandora/object/etd:37021.

MLA Handbook (7th Edition):

Theusch, Colleen Joan, 1932-. “Determination of the Hilbert Class Field for certain algebraic number fields.” 1971. Web. 07 Jun 2020.

Vancouver:

Theusch, Colleen Joan 1. Determination of the Hilbert Class Field for certain algebraic number fields. [Internet] [Doctoral dissertation]. Michigan State University; 1971. [cited 2020 Jun 07]. Available from: http://etd.lib.msu.edu/islandora/object/etd:37021.

Council of Science Editors:

Theusch, Colleen Joan 1. Determination of the Hilbert Class Field for certain algebraic number fields. [Doctoral Dissertation]. Michigan State University; 1971. Available from: http://etd.lib.msu.edu/islandora/object/etd:37021


University of Maine

16. Rozario, Rebecca. The Distribution of the Irreducibles in an Algebraic Number Field.

Degree: MS, Mathematics, 2003, University of Maine

  The objective of this thesis is to study the distribution of the number of principal ideals generated by an irreducible element in an algebraic… (more)

Subjects/Keywords: Algebraic fields; class field theory; Algebra; Mathematics; Number Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rozario, R. (2003). The Distribution of the Irreducibles in an Algebraic Number Field. (Masters Thesis). University of Maine. Retrieved from https://digitalcommons.library.umaine.edu/etd/405

Chicago Manual of Style (16th Edition):

Rozario, Rebecca. “The Distribution of the Irreducibles in an Algebraic Number Field.” 2003. Masters Thesis, University of Maine. Accessed June 07, 2020. https://digitalcommons.library.umaine.edu/etd/405.

MLA Handbook (7th Edition):

Rozario, Rebecca. “The Distribution of the Irreducibles in an Algebraic Number Field.” 2003. Web. 07 Jun 2020.

Vancouver:

Rozario R. The Distribution of the Irreducibles in an Algebraic Number Field. [Internet] [Masters thesis]. University of Maine; 2003. [cited 2020 Jun 07]. Available from: https://digitalcommons.library.umaine.edu/etd/405.

Council of Science Editors:

Rozario R. The Distribution of the Irreducibles in an Algebraic Number Field. [Masters Thesis]. University of Maine; 2003. Available from: https://digitalcommons.library.umaine.edu/etd/405

17. JoÃo Victor Maximiano Albuquerque. Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados.

Degree: Master, 2013, Universidade Federal do Ceará

Este trabalho à baseado no artigo Finiteness of the class group of a number field via lattice packings. Daremos aqui uma prova alternativa da finitude… (more)

Subjects/Keywords: ALGEBRA; corpo de numeros; grupo das classes; geometria de nÃmeros; number fields; class groups; geometry of numbers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Albuquerque, J. V. M. (2013). Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247 ;

Chicago Manual of Style (16th Edition):

Albuquerque, JoÃo Victor Maximiano. “Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados.” 2013. Masters Thesis, Universidade Federal do Ceará. Accessed June 07, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247 ;.

MLA Handbook (7th Edition):

Albuquerque, JoÃo Victor Maximiano. “Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados.” 2013. Web. 07 Jun 2020.

Vancouver:

Albuquerque JVM. Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados. [Internet] [Masters thesis]. Universidade Federal do Ceará 2013. [cited 2020 Jun 07]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247 ;.

Council of Science Editors:

Albuquerque JVM. Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados. [Masters Thesis]. Universidade Federal do Ceará 2013. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247 ;


Universiteit Utrecht

18. Smit, H.J. Global field isomorphisms: a class field theoretical approach.

Degree: 2016, Universiteit Utrecht

 This master’s thesis, Global field isomorphisms: a class field theoretical approach, was written by Harry Smit from October 2015 until June 2016. It is submitted… (more)

Subjects/Keywords: Algebraic number theory; Galois theory; Global fields; class field theory; topological groups; Dirichlet L-series; abelian extensions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smit, H. J. (2016). Global field isomorphisms: a class field theoretical approach. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/337051

Chicago Manual of Style (16th Edition):

Smit, H J. “Global field isomorphisms: a class field theoretical approach.” 2016. Masters Thesis, Universiteit Utrecht. Accessed June 07, 2020. http://dspace.library.uu.nl:8080/handle/1874/337051.

MLA Handbook (7th Edition):

Smit, H J. “Global field isomorphisms: a class field theoretical approach.” 2016. Web. 07 Jun 2020.

Vancouver:

Smit HJ. Global field isomorphisms: a class field theoretical approach. [Internet] [Masters thesis]. Universiteit Utrecht; 2016. [cited 2020 Jun 07]. Available from: http://dspace.library.uu.nl:8080/handle/1874/337051.

Council of Science Editors:

Smit HJ. Global field isomorphisms: a class field theoretical approach. [Masters Thesis]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/337051


Montana Tech

19. Kasube, Herbert Emil. THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE.

Degree: PhD, 1979, Montana Tech

Subjects/Keywords: Algebraic fields.; Class field theory.; Number theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kasube, H. E. (1979). THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/10051

Chicago Manual of Style (16th Edition):

Kasube, Herbert Emil. “THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE.” 1979. Doctoral Dissertation, Montana Tech. Accessed June 07, 2020. https://scholarworks.umt.edu/etd/10051.

MLA Handbook (7th Edition):

Kasube, Herbert Emil. “THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE.” 1979. Web. 07 Jun 2020.

Vancouver:

Kasube HE. THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE. [Internet] [Doctoral dissertation]. Montana Tech; 1979. [cited 2020 Jun 07]. Available from: https://scholarworks.umt.edu/etd/10051.

Council of Science Editors:

Kasube HE. THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE. [Doctoral Dissertation]. Montana Tech; 1979. Available from: https://scholarworks.umt.edu/etd/10051


Virginia Tech

20. Taylor, Frank Seaton. Quintic Abelian Fields.

Degree: PhD, Mathematics, 1997, Virginia Tech

 Quintic abelian fields are characterized in terms of their conductor and a certain Galois group. From these, a generating polynomial and its roots and an… (more)

Subjects/Keywords: Abelian Fields; Class Number; Conductor; Fundamental Unit; Quintic Fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taylor, F. S. (1997). Quintic Abelian Fields. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/29662

Chicago Manual of Style (16th Edition):

Taylor, Frank Seaton. “Quintic Abelian Fields.” 1997. Doctoral Dissertation, Virginia Tech. Accessed June 07, 2020. http://hdl.handle.net/10919/29662.

MLA Handbook (7th Edition):

Taylor, Frank Seaton. “Quintic Abelian Fields.” 1997. Web. 07 Jun 2020.

Vancouver:

Taylor FS. Quintic Abelian Fields. [Internet] [Doctoral dissertation]. Virginia Tech; 1997. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10919/29662.

Council of Science Editors:

Taylor FS. Quintic Abelian Fields. [Doctoral Dissertation]. Virginia Tech; 1997. Available from: http://hdl.handle.net/10919/29662

21. Gélin, Alexandre. Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology.

Degree: Docteur es, Informatique, 2017, Université Pierre et Marie Curie – Paris VI

Dans cette thèse, nous nous intéressons au calcul du groupe de classes d'un corps de nombres. Nous débutons par décrire un algorithme de réduction du… (more)

Subjects/Keywords: Groupe de classes; Théorie des nombres; Cryptographie; Algorithmique; Cryptologie; Corps de nombres; Class groups; Cryptography; Number fields; 004

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gélin, A. (2017). Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066398

Chicago Manual of Style (16th Edition):

Gélin, Alexandre. “Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed June 07, 2020. http://www.theses.fr/2017PA066398.

MLA Handbook (7th Edition):

Gélin, Alexandre. “Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology.” 2017. Web. 07 Jun 2020.

Vancouver:

Gélin A. Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2020 Jun 07]. Available from: http://www.theses.fr/2017PA066398.

Council of Science Editors:

Gélin A. Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066398

22. Brakenhoff, Johannes Franciscus. Counting problems for number rings.

Degree: 2009, Mathematical Institute, Faculty of Science, Leiden University

 In this thesis we look at three counting problems connected to orders in number fields. First we study the probability that for a random polynomial… (more)

Subjects/Keywords: Algebraic number theory; Class groups; Class number; Discriminants; Maximal order; Polynomials; Quintic rings; Squarefree; Subrings; Algebraic number theory; Class groups; Class number; Discriminants; Maximal order; Polynomials; Quintic rings; Squarefree; Subrings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brakenhoff, J. F. (2009). Counting problems for number rings. (Doctoral Dissertation). Mathematical Institute, Faculty of Science, Leiden University. Retrieved from http://hdl.handle.net/1887/14539

Chicago Manual of Style (16th Edition):

Brakenhoff, Johannes Franciscus. “Counting problems for number rings.” 2009. Doctoral Dissertation, Mathematical Institute, Faculty of Science, Leiden University. Accessed June 07, 2020. http://hdl.handle.net/1887/14539.

MLA Handbook (7th Edition):

Brakenhoff, Johannes Franciscus. “Counting problems for number rings.” 2009. Web. 07 Jun 2020.

Vancouver:

Brakenhoff JF. Counting problems for number rings. [Internet] [Doctoral dissertation]. Mathematical Institute, Faculty of Science, Leiden University; 2009. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1887/14539.

Council of Science Editors:

Brakenhoff JF. Counting problems for number rings. [Doctoral Dissertation]. Mathematical Institute, Faculty of Science, Leiden University; 2009. Available from: http://hdl.handle.net/1887/14539


Georgia Tech

23. Shin, Hyunshik. Algebraic degrees of stretch factors in mapping class groups.

Degree: PhD, Mathematics, 2014, Georgia Tech

 Given a closed surface Sg of genus g, a mapping class f in \MCG(Sg) is said to be pseudo-Anosov if it preserves a pair of… (more)

Subjects/Keywords: Pseudo-Anosov; Stretch factor; Dilatation; Algebraic degree; Salem number; Train track; Class groups (Mathematics); Mappings (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shin, H. (2014). Algebraic degrees of stretch factors in mapping class groups. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/51910

Chicago Manual of Style (16th Edition):

Shin, Hyunshik. “Algebraic degrees of stretch factors in mapping class groups.” 2014. Doctoral Dissertation, Georgia Tech. Accessed June 07, 2020. http://hdl.handle.net/1853/51910.

MLA Handbook (7th Edition):

Shin, Hyunshik. “Algebraic degrees of stretch factors in mapping class groups.” 2014. Web. 07 Jun 2020.

Vancouver:

Shin H. Algebraic degrees of stretch factors in mapping class groups. [Internet] [Doctoral dissertation]. Georgia Tech; 2014. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1853/51910.

Council of Science Editors:

Shin H. Algebraic degrees of stretch factors in mapping class groups. [Doctoral Dissertation]. Georgia Tech; 2014. Available from: http://hdl.handle.net/1853/51910


Virginia Tech

24. Chalmeta, A. Pablo. On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures.

Degree: PhD, Mathematics, 2006, Virginia Tech

 If we adjoin the cube root of a cube free rational integer <i>m</i> to the rational numbers we construct a cubic field. If we adjoin… (more)

Subjects/Keywords: Bicubic Fields; Invariants; Ideal Class Group; Normal Closure; Class Number

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chalmeta, A. P. (2006). On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/29191

Chicago Manual of Style (16th Edition):

Chalmeta, A Pablo. “On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures.” 2006. Doctoral Dissertation, Virginia Tech. Accessed June 07, 2020. http://hdl.handle.net/10919/29191.

MLA Handbook (7th Edition):

Chalmeta, A Pablo. “On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures.” 2006. Web. 07 Jun 2020.

Vancouver:

Chalmeta AP. On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures. [Internet] [Doctoral dissertation]. Virginia Tech; 2006. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10919/29191.

Council of Science Editors:

Chalmeta AP. On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures. [Doctoral Dissertation]. Virginia Tech; 2006. Available from: http://hdl.handle.net/10919/29191

25. Ward, Kenneth A. Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field.

Degree: Department of Mathematics, 2012, Oklahoma State University

 Among abelian extensions of a congruence function field, an asymptotic relation of class number and genus is established. The proof is completely classical, employing well-known… (more)

Subjects/Keywords: abelian; asymptotic; class field theory; class number; function field; genus

…Fg F n In general, the asymptotic relationship between class number and genus remains an… …for finite normal extensions K of Q with class number hK , regulator RK , and discriminant… …The work of Inaba depends upon an estimate for the number of integral divisors of degree… …extension is equal to Fq [38]. By use of a result in class field theory that employs the… …global class field theory that the Artin map of a finite, unramified, and abelian extension of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ward, K. A. (2012). Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field. (Thesis). Oklahoma State University. Retrieved from http://hdl.handle.net/11244/6834

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ward, Kenneth A. “Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field.” 2012. Thesis, Oklahoma State University. Accessed June 07, 2020. http://hdl.handle.net/11244/6834.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ward, Kenneth A. “Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field.” 2012. Web. 07 Jun 2020.

Vancouver:

Ward KA. Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field. [Internet] [Thesis]. Oklahoma State University; 2012. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/11244/6834.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ward KA. Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field. [Thesis]. Oklahoma State University; 2012. Available from: http://hdl.handle.net/11244/6834

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Leiden University

26. Kilicer, P. The CM class number one problem for curves.

Degree: 2016, Leiden University

 The main class="hilite">subject of this thesis is the CM class number one problem for curves of genus g, in the cases g=2 and g=3. The… (more)

Subjects/Keywords: Complex multiplication; CM curves; Class number one; Field of definition; Complex multiplication; CM curves; Class number one; Field of definition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kilicer, P. (2016). The CM class number one problem for curves. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/41145

Chicago Manual of Style (16th Edition):

Kilicer, P. “The CM class number one problem for curves.” 2016. Doctoral Dissertation, Leiden University. Accessed June 07, 2020. http://hdl.handle.net/1887/41145.

MLA Handbook (7th Edition):

Kilicer, P. “The CM class number one problem for curves.” 2016. Web. 07 Jun 2020.

Vancouver:

Kilicer P. The CM class number one problem for curves. [Internet] [Doctoral dissertation]. Leiden University; 2016. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1887/41145.

Council of Science Editors:

Kilicer P. The CM class number one problem for curves. [Doctoral Dissertation]. Leiden University; 2016. Available from: http://hdl.handle.net/1887/41145


Leiden University

27. Milovic, D. On the 16-rank of class groups of quadratic number fields.

Degree: 2016, Leiden University

 We prove two new density results about 16-ranks of class groups of quadratic number fields. They can be stated informally as follows. Let C(D) denote… (more)

Subjects/Keywords: Number theory; Arithmetic statistics; Class groups; Sieve methods; Number theory; Arithmetic statistics; Class groups; Sieve methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Milovic, D. (2016). On the 16-rank of class groups of quadratic number fields. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/42085

Chicago Manual of Style (16th Edition):

Milovic, D. “On the 16-rank of class groups of quadratic number fields.” 2016. Doctoral Dissertation, Leiden University. Accessed June 07, 2020. http://hdl.handle.net/1887/42085.

MLA Handbook (7th Edition):

Milovic, D. “On the 16-rank of class groups of quadratic number fields.” 2016. Web. 07 Jun 2020.

Vancouver:

Milovic D. On the 16-rank of class groups of quadratic number fields. [Internet] [Doctoral dissertation]. Leiden University; 2016. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1887/42085.

Council of Science Editors:

Milovic D. On the 16-rank of class groups of quadratic number fields. [Doctoral Dissertation]. Leiden University; 2016. Available from: http://hdl.handle.net/1887/42085

28. Ferreira, Luan Alberto. Teoria de corpos de classe e aplicações.

Degree: Mestrado, Matemática, 2012, University of São Paulo

Neste projeto, propomos estudar a chamada \"Teoria de Corpos de Classe,q̈ue oferece uma descrição simples das extensões abelianas de corpos locais e globais, bem como… (more)

Subjects/Keywords: Abelian extensions; Algebraic number theory; Class field theory; Corpos ciclotômicos; Cyclotomic fields; Extensões abelianas; Inverse Galois problem; Problema inverso de Galois; Teoria algébrica dos números; Teoria de corpos de classe

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferreira, L. A. (2012). Teoria de corpos de classe e aplicações. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05122012-102820/ ;

Chicago Manual of Style (16th Edition):

Ferreira, Luan Alberto. “Teoria de corpos de classe e aplicações.” 2012. Masters Thesis, University of São Paulo. Accessed June 07, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05122012-102820/ ;.

MLA Handbook (7th Edition):

Ferreira, Luan Alberto. “Teoria de corpos de classe e aplicações.” 2012. Web. 07 Jun 2020.

Vancouver:

Ferreira LA. Teoria de corpos de classe e aplicações. [Internet] [Masters thesis]. University of São Paulo; 2012. [cited 2020 Jun 07]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05122012-102820/ ;.

Council of Science Editors:

Ferreira LA. Teoria de corpos de classe e aplicações. [Masters Thesis]. University of São Paulo; 2012. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05122012-102820/ ;

29. All, Timothy James. On the Galois module structure of the units and ray classes of a real abelian number field.

Degree: PhD, Mathematics, 2013, The Ohio State University

 We study the Galois module structure of the ideal ray class group and the group of units of a real abelian number field. Specifically, we… (more)

Subjects/Keywords: Mathematics; real abelian number field; class group; Stickelberger; units

…x5B;R− : S− k ] = hpn where hpn is the relative class number of Q(ζpn ). 1… …is the class number of k. Once again, for general abelian number fields, Sinnott [16… …CHAPTER 1 INTRODUCTION 1.1 History Let k be an abelian number field of conductor m. Let… …For any real x, let {x} denote the unique real number such that x − {x}… …the ideal class group of k. Stickelberger’s theorem follows by studying the factorization of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

All, T. J. (2013). On the Galois module structure of the units and ray classes of a real abelian number field. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1365594642

Chicago Manual of Style (16th Edition):

All, Timothy James. “On the Galois module structure of the units and ray classes of a real abelian number field.” 2013. Doctoral Dissertation, The Ohio State University. Accessed June 07, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1365594642.

MLA Handbook (7th Edition):

All, Timothy James. “On the Galois module structure of the units and ray classes of a real abelian number field.” 2013. Web. 07 Jun 2020.

Vancouver:

All TJ. On the Galois module structure of the units and ray classes of a real abelian number field. [Internet] [Doctoral dissertation]. The Ohio State University; 2013. [cited 2020 Jun 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1365594642.

Council of Science Editors:

All TJ. On the Galois module structure of the units and ray classes of a real abelian number field. [Doctoral Dissertation]. The Ohio State University; 2013. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1365594642

30. Sinclair, Brian. Algorithms for enumerating invariants and extensions of local fields.

Degree: 2015, University of North Carolina – Greensboro

 There are many computationally difficult problems in the study of p-adic fields, among them the classification of field extensions and the decomposition of global ideals.… (more)

Subjects/Keywords: Class field theory; p-adic fields; Number theory

…Kronecker's work on the factoring of prime ideals in number elds when he namely the functions… …properties of a function by expanding functions locally, should be translatable to number theory… …series expansion of a rational number number r ∈ Q in terms of powers of a prime p, 1 r… …X ri pi . i=N Hensel called this series the p-adic nal number can be expressed about… …near r near p, expansion of r. p-adically With respect to a prime number in this way… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sinclair, B. (2015). Algorithms for enumerating invariants and extensions of local fields. (Doctoral Dissertation). University of North Carolina – Greensboro. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=18186

Chicago Manual of Style (16th Edition):

Sinclair, Brian. “Algorithms for enumerating invariants and extensions of local fields.” 2015. Doctoral Dissertation, University of North Carolina – Greensboro. Accessed June 07, 2020. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=18186.

MLA Handbook (7th Edition):

Sinclair, Brian. “Algorithms for enumerating invariants and extensions of local fields.” 2015. Web. 07 Jun 2020.

Vancouver:

Sinclair B. Algorithms for enumerating invariants and extensions of local fields. [Internet] [Doctoral dissertation]. University of North Carolina – Greensboro; 2015. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=18186.

Council of Science Editors:

Sinclair B. Algorithms for enumerating invariants and extensions of local fields. [Doctoral Dissertation]. University of North Carolina – Greensboro; 2015. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=18186

[1] [2]

.