Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:( Class number)`

.
Showing records 1 – 30 of
52 total matches.

Search Limiters

Dates

- 2016 – 2020 (12)
- 2011 – 2015 (22)
- 2006 – 2010 (11)

▼ Search Limiters

University of Colorado

1. Feaver, A.F. Amy. Euclid's Algorithm in Multiquadratic Fields.

Degree: PhD, Mathematics, 2014, University of Colorado

URL: https://scholar.colorado.edu/math_gradetds/30

► In this thesis we find that all imaginary n-quadratic fields with n>3 have *class* *number* larger than 1 and therefore cannot be Euclidean. We…
(more)

Subjects/Keywords: Class Number; Euclidean Rings; Number Fields; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Feaver, A. F. A. (2014). Euclid's Algorithm in Multiquadratic Fields. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/30

Chicago Manual of Style (16^{th} Edition):

Feaver, A F Amy. “Euclid's Algorithm in Multiquadratic Fields.” 2014. Doctoral Dissertation, University of Colorado. Accessed June 07, 2020. https://scholar.colorado.edu/math_gradetds/30.

MLA Handbook (7^{th} Edition):

Feaver, A F Amy. “Euclid's Algorithm in Multiquadratic Fields.” 2014. Web. 07 Jun 2020.

Vancouver:

Feaver AFA. Euclid's Algorithm in Multiquadratic Fields. [Internet] [Doctoral dissertation]. University of Colorado; 2014. [cited 2020 Jun 07]. Available from: https://scholar.colorado.edu/math_gradetds/30.

Council of Science Editors:

Feaver AFA. Euclid's Algorithm in Multiquadratic Fields. [Doctoral Dissertation]. University of Colorado; 2014. Available from: https://scholar.colorado.edu/math_gradetds/30

University of Southern California

2.
Berry, Christopher D.
The *class* *number* formula.

Degree: MA, Mathematics, 2012, University of Southern California

URL: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/1542/rec/6513

► The analytic *class* *number* formula equates the residue of a dedekind zeta function at 1 with various properties of a related *number* field. These properties…
(more)

Subjects/Keywords: analytic class number formula; class number; class number formula; number field; principal ideal domain; zeta function

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Berry, C. D. (2012). The class number formula. (Masters Thesis). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/1542/rec/6513

Chicago Manual of Style (16^{th} Edition):

Berry, Christopher D. “The class number formula.” 2012. Masters Thesis, University of Southern California. Accessed June 07, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/1542/rec/6513.

MLA Handbook (7^{th} Edition):

Berry, Christopher D. “The class number formula.” 2012. Web. 07 Jun 2020.

Vancouver:

Berry CD. The class number formula. [Internet] [Masters thesis]. University of Southern California; 2012. [cited 2020 Jun 07]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/1542/rec/6513.

Council of Science Editors:

Berry CD. The class number formula. [Masters Thesis]. University of Southern California; 2012. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/1542/rec/6513

University of Sydney

3.
Zhang, Yinan.
p-adic Verification of *Class* *Number* Computations
.

Degree: 2013, University of Sydney

URL: http://hdl.handle.net/2123/9821

► The aim of this thesis is to determine if it is possible, using p-adic techniques, to unconditionally evaluate the p-valuation of the *class* *number* h…
(more)

Subjects/Keywords: class number computation; p-adic L-function

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhang, Y. (2013). p-adic Verification of Class Number Computations . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/9821

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Zhang, Yinan. “p-adic Verification of Class Number Computations .” 2013. Thesis, University of Sydney. Accessed June 07, 2020. http://hdl.handle.net/2123/9821.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Zhang, Yinan. “p-adic Verification of Class Number Computations .” 2013. Web. 07 Jun 2020.

Vancouver:

Zhang Y. p-adic Verification of Class Number Computations . [Internet] [Thesis]. University of Sydney; 2013. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/2123/9821.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhang Y. p-adic Verification of Class Number Computations . [Thesis]. University of Sydney; 2013. Available from: http://hdl.handle.net/2123/9821

Not specified: Masters Thesis or Doctoral Dissertation

University of Toronto

4.
Klys, Jack.
Statistics of *class* groups and related topics.

Degree: PhD, 2017, University of Toronto

URL: http://hdl.handle.net/1807/79031

► We prove several results concering *class* groups of *number* fields and function fields. Firstly we compute all the moments of the p-torsion in the first…
(more)

Subjects/Keywords: Arithmetic statistics; Class groups; Cohen-Lenstra heuristics; Number fields; Number theory; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Klys, J. (2017). Statistics of class groups and related topics. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/79031

Chicago Manual of Style (16^{th} Edition):

Klys, Jack. “Statistics of class groups and related topics.” 2017. Doctoral Dissertation, University of Toronto. Accessed June 07, 2020. http://hdl.handle.net/1807/79031.

MLA Handbook (7^{th} Edition):

Klys, Jack. “Statistics of class groups and related topics.” 2017. Web. 07 Jun 2020.

Vancouver:

Klys J. Statistics of class groups and related topics. [Internet] [Doctoral dissertation]. University of Toronto; 2017. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1807/79031.

Council of Science Editors:

Klys J. Statistics of class groups and related topics. [Doctoral Dissertation]. University of Toronto; 2017. Available from: http://hdl.handle.net/1807/79031

5.
Bond, Jacob.
The Stickelberger Ideal and the Cyclotomic *Class*
* Number*.

Degree: MS, Mathematics, 2013, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371004

► The ideal *class* group is an important object in the study of algebraic *number* fields, as is the associated *class* *number*. In cyclotomic fields in…
(more)

Subjects/Keywords: Mathematics; Stickelberger; class number

…*class* *number*, h− , and the minus part of the Stickelberger ideal,
I− . Following Iwasawa, it… …deriving the analytic *class* *number* formula. To begin, let
σ1 , σ2 , . . . , σr1 be the real… …result which will later be used
in the process of establishing the analytic *class* *number*… …where f and g are the residue *class* degree
and the *number* of primes lying above p in k.
Proof… …result will be central to the determination of a formula for the *class* *number*. ([3…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bond, J. (2013). The Stickelberger Ideal and the Cyclotomic Class Number. (Masters Thesis). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371004

Chicago Manual of Style (16^{th} Edition):

Bond, Jacob. “The Stickelberger Ideal and the Cyclotomic Class Number.” 2013. Masters Thesis, The Ohio State University. Accessed June 07, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371004.

MLA Handbook (7^{th} Edition):

Bond, Jacob. “The Stickelberger Ideal and the Cyclotomic Class Number.” 2013. Web. 07 Jun 2020.

Vancouver:

Bond J. The Stickelberger Ideal and the Cyclotomic Class Number. [Internet] [Masters thesis]. The Ohio State University; 2013. [cited 2020 Jun 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371004.

Council of Science Editors:

Bond J. The Stickelberger Ideal and the Cyclotomic Class Number. [Masters Thesis]. The Ohio State University; 2013. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371004

University of Toronto

6. Love, Jonathan Richard. Field Extensions Generated by Kernels of Isogenies.

Degree: 2016, University of Toronto

URL: http://hdl.handle.net/1807/75337

►

Given an odd prime p, A technique due to Jean-Fran\c{c}ois Mestre allows one to construct infinitely many quadratic fields for which the ideal *class* group…
(more)

Subjects/Keywords: class number; elliptic curve; field extension; isogeny; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Love, J. R. (2016). Field Extensions Generated by Kernels of Isogenies. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/75337

Chicago Manual of Style (16^{th} Edition):

Love, Jonathan Richard. “Field Extensions Generated by Kernels of Isogenies.” 2016. Masters Thesis, University of Toronto. Accessed June 07, 2020. http://hdl.handle.net/1807/75337.

MLA Handbook (7^{th} Edition):

Love, Jonathan Richard. “Field Extensions Generated by Kernels of Isogenies.” 2016. Web. 07 Jun 2020.

Vancouver:

Love JR. Field Extensions Generated by Kernels of Isogenies. [Internet] [Masters thesis]. University of Toronto; 2016. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1807/75337.

Council of Science Editors:

Love JR. Field Extensions Generated by Kernels of Isogenies. [Masters Thesis]. University of Toronto; 2016. Available from: http://hdl.handle.net/1807/75337

University of Arizona

7. McLeman, Cameron William. A Golod-Shafarevich Equality and p-Tower Groups .

Degree: 2008, University of Arizona

URL: http://hdl.handle.net/10150/194026

► Let K be a quadratic imaginary *number* field, let Kp^(infinity) the top of its p-*class* field tower for p an odd prime, and let G=Gal(Kp^(infinity)/K).…
(more)

Subjects/Keywords: number theory; class field towers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McLeman, C. W. (2008). A Golod-Shafarevich Equality and p-Tower Groups . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/194026

Chicago Manual of Style (16^{th} Edition):

McLeman, Cameron William. “A Golod-Shafarevich Equality and p-Tower Groups .” 2008. Doctoral Dissertation, University of Arizona. Accessed June 07, 2020. http://hdl.handle.net/10150/194026.

MLA Handbook (7^{th} Edition):

McLeman, Cameron William. “A Golod-Shafarevich Equality and p-Tower Groups .” 2008. Web. 07 Jun 2020.

Vancouver:

McLeman CW. A Golod-Shafarevich Equality and p-Tower Groups . [Internet] [Doctoral dissertation]. University of Arizona; 2008. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10150/194026.

Council of Science Editors:

McLeman CW. A Golod-Shafarevich Equality and p-Tower Groups . [Doctoral Dissertation]. University of Arizona; 2008. Available from: http://hdl.handle.net/10150/194026

8. NC DOCKS at The University of North Carolina at Greensboro; Sinclair, Brian. Algorithms for enumerating invariants and extensions of local fields.

Degree: 2015, NC Docks

URL: http://libres.uncg.edu/ir/uncg/f/Sinclair_uncg_0154D_11665.pdf

► There are many computationally difficult problems in the study of p-adic fields, among them the classification of field extensions and the decomposition of global ideals.…
(more)

Subjects/Keywords: Class field theory; p-adic fields; Number theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

NC DOCKS at The University of North Carolina at Greensboro; Sinclair, B. (2015). Algorithms for enumerating invariants and extensions of local fields. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Sinclair_uncg_0154D_11665.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

NC DOCKS at The University of North Carolina at Greensboro; Sinclair, Brian. “Algorithms for enumerating invariants and extensions of local fields.” 2015. Thesis, NC Docks. Accessed June 07, 2020. http://libres.uncg.edu/ir/uncg/f/Sinclair_uncg_0154D_11665.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

NC DOCKS at The University of North Carolina at Greensboro; Sinclair, Brian. “Algorithms for enumerating invariants and extensions of local fields.” 2015. Web. 07 Jun 2020.

Vancouver:

NC DOCKS at The University of North Carolina at Greensboro; Sinclair B. Algorithms for enumerating invariants and extensions of local fields. [Internet] [Thesis]. NC Docks; 2015. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/uncg/f/Sinclair_uncg_0154D_11665.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

NC DOCKS at The University of North Carolina at Greensboro; Sinclair B. Algorithms for enumerating invariants and extensions of local fields. [Thesis]. NC Docks; 2015. Available from: http://libres.uncg.edu/ir/uncg/f/Sinclair_uncg_0154D_11665.pdf

Not specified: Masters Thesis or Doctoral Dissertation

University of Southern California

9.
Narayanan, Anand Kumar.
Computation of *class* groups and residue *class* rings of
function fields over finite fields.

Degree: PhD, Computer Science, 2014, University of Southern California

URL: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/451911/rec/1538

► We study the computation of the structure of two finite abelian groups associated with function fields over finite fields: the degree zero divisor *class* group…
(more)

Subjects/Keywords: number theory; computational number theory; function fields; finite fields; primitive elements; polynomial factorization; divisor class group; Stark units

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Narayanan, A. K. (2014). Computation of class groups and residue class rings of function fields over finite fields. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/451911/rec/1538

Chicago Manual of Style (16^{th} Edition):

Narayanan, Anand Kumar. “Computation of class groups and residue class rings of function fields over finite fields.” 2014. Doctoral Dissertation, University of Southern California. Accessed June 07, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/451911/rec/1538.

MLA Handbook (7^{th} Edition):

Narayanan, Anand Kumar. “Computation of class groups and residue class rings of function fields over finite fields.” 2014. Web. 07 Jun 2020.

Vancouver:

Narayanan AK. Computation of class groups and residue class rings of function fields over finite fields. [Internet] [Doctoral dissertation]. University of Southern California; 2014. [cited 2020 Jun 07]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/451911/rec/1538.

Council of Science Editors:

Narayanan AK. Computation of class groups and residue class rings of function fields over finite fields. [Doctoral Dissertation]. University of Southern California; 2014. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/451911/rec/1538

University of Western Ontario

10. Ataei Jaliseh, Masoud. Galois 2-Extensions.

Degree: 2015, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/3381

► The inverse Galois problem is a major question in mathematics. For a given base field and a given finite group G, one would like to…
(more)

Subjects/Keywords: Galois Theory; Class Field Theory; Massey Products; Galois Extensions of Local Fields.; Algebra; Number Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ataei Jaliseh, M. (2015). Galois 2-Extensions. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3381

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ataei Jaliseh, Masoud. “Galois 2-Extensions.” 2015. Thesis, University of Western Ontario. Accessed June 07, 2020. https://ir.lib.uwo.ca/etd/3381.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ataei Jaliseh, Masoud. “Galois 2-Extensions.” 2015. Web. 07 Jun 2020.

Vancouver:

Ataei Jaliseh M. Galois 2-Extensions. [Internet] [Thesis]. University of Western Ontario; 2015. [cited 2020 Jun 07]. Available from: https://ir.lib.uwo.ca/etd/3381.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ataei Jaliseh M. Galois 2-Extensions. [Thesis]. University of Western Ontario; 2015. Available from: https://ir.lib.uwo.ca/etd/3381

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

11. Lin , Cheng-Wei. D-optimal designs for binary response models in mixture experiments.

Degree: Master, Applied Mathematics, 2014, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0416113-143906

► ããIn this work, D-optimal designs for binary response models in mixture experiments are discussed. This kind of model setting occurs in many chemical experiments. Under…
(more)

Subjects/Keywords: reduced number of optimal supports; Tchebycheff Systems; Essentially complete class of designs; restricted design space

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lin , C. (2014). D-optimal designs for binary response models in mixture experiments. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0416113-143906

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lin , Cheng-Wei. “D-optimal designs for binary response models in mixture experiments.” 2014. Thesis, NSYSU. Accessed June 07, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0416113-143906.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lin , Cheng-Wei. “D-optimal designs for binary response models in mixture experiments.” 2014. Web. 07 Jun 2020.

Vancouver:

Lin C. D-optimal designs for binary response models in mixture experiments. [Internet] [Thesis]. NSYSU; 2014. [cited 2020 Jun 07]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0416113-143906.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lin C. D-optimal designs for binary response models in mixture experiments. [Thesis]. NSYSU; 2014. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0416113-143906

Not specified: Masters Thesis or Doctoral Dissertation

University of California – Santa Cruz

12. Ferrara, Joseph William. Stark's Conjectures for p-adic L-functions.

Degree: Mathematics, 2018, University of California – Santa Cruz

URL: http://www.escholarship.org/uc/item/4qv5b8tz

► We give a new definition of a p-adic L-function for a mixed signature character of a real quadratic field and for a nontrivial ray *class*…
(more)

Subjects/Keywords: Mathematics; class field theory; L-functions; number theory; p-adic; Stark's Conjectures; units

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ferrara, J. W. (2018). Stark's Conjectures for p-adic L-functions. (Thesis). University of California – Santa Cruz. Retrieved from http://www.escholarship.org/uc/item/4qv5b8tz

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ferrara, Joseph William. “Stark's Conjectures for p-adic L-functions.” 2018. Thesis, University of California – Santa Cruz. Accessed June 07, 2020. http://www.escholarship.org/uc/item/4qv5b8tz.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ferrara, Joseph William. “Stark's Conjectures for p-adic L-functions.” 2018. Web. 07 Jun 2020.

Vancouver:

Ferrara JW. Stark's Conjectures for p-adic L-functions. [Internet] [Thesis]. University of California – Santa Cruz; 2018. [cited 2020 Jun 07]. Available from: http://www.escholarship.org/uc/item/4qv5b8tz.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ferrara JW. Stark's Conjectures for p-adic L-functions. [Thesis]. University of California – Santa Cruz; 2018. Available from: http://www.escholarship.org/uc/item/4qv5b8tz

Not specified: Masters Thesis or Doctoral Dissertation

University of Toronto

13.
Dahl, Alexander Oswald.
On Moments of *Class* Numbers of Real Quadratic Fields.

Degree: 2010, University of Toronto

URL: http://hdl.handle.net/1807/24553

►

*Class* numbers of algebraic *number* fields are central invariants. Once the underlying field has an infinite unit group they behave very irregularly due to a…
(more)

Subjects/Keywords: analytic number theory; real quadratic fields; binary quadratic forms; class group moments; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dahl, A. O. (2010). On Moments of Class Numbers of Real Quadratic Fields. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/24553

Chicago Manual of Style (16^{th} Edition):

Dahl, Alexander Oswald. “On Moments of Class Numbers of Real Quadratic Fields.” 2010. Masters Thesis, University of Toronto. Accessed June 07, 2020. http://hdl.handle.net/1807/24553.

MLA Handbook (7^{th} Edition):

Dahl, Alexander Oswald. “On Moments of Class Numbers of Real Quadratic Fields.” 2010. Web. 07 Jun 2020.

Vancouver:

Dahl AO. On Moments of Class Numbers of Real Quadratic Fields. [Internet] [Masters thesis]. University of Toronto; 2010. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1807/24553.

Council of Science Editors:

Dahl AO. On Moments of Class Numbers of Real Quadratic Fields. [Masters Thesis]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/24553

Queens University

14.
Droll, Andrew.
Variations of Li's criterion for an extension of the Selberg *class*="hilite">*class*
.

Degree: Mathematics and Statistics, 2012, Queens University

URL: http://hdl.handle.net/1974/7352

► In 1997, Xian-Jin Li gave an equivalence to the classical Riemann hypothesis, now referred to as Li's criterion, in terms of the non-negativity of a…
(more)

Subjects/Keywords: Selberg class; Li's criterion; GRH; RH; Number Theory; zero-free regions; arithmetic formulae; Riemann hypothesis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Droll, A. (2012). Variations of Li's criterion for an extension of the Selberg class . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/7352

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Droll, Andrew. “Variations of Li's criterion for an extension of the Selberg class .” 2012. Thesis, Queens University. Accessed June 07, 2020. http://hdl.handle.net/1974/7352.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Droll, Andrew. “Variations of Li's criterion for an extension of the Selberg class .” 2012. Web. 07 Jun 2020.

Vancouver:

Droll A. Variations of Li's criterion for an extension of the Selberg class . [Internet] [Thesis]. Queens University; 2012. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1974/7352.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Droll A. Variations of Li's criterion for an extension of the Selberg class . [Thesis]. Queens University; 2012. Available from: http://hdl.handle.net/1974/7352

Not specified: Masters Thesis or Doctoral Dissertation

Michigan State University

15.
Theusch, Colleen Joan, 1932-.
Determination of the Hilbert *Class* Field for certain algebraic *number* fields.

Degree: PhD, Department of Mathematics, 1971, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:37021

Subjects/Keywords: Algebraic number theory; Class field theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Theusch, Colleen Joan, 1. (1971). Determination of the Hilbert Class Field for certain algebraic number fields. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:37021

Chicago Manual of Style (16^{th} Edition):

Theusch, Colleen Joan, 1932-. “Determination of the Hilbert Class Field for certain algebraic number fields.” 1971. Doctoral Dissertation, Michigan State University. Accessed June 07, 2020. http://etd.lib.msu.edu/islandora/object/etd:37021.

MLA Handbook (7^{th} Edition):

Theusch, Colleen Joan, 1932-. “Determination of the Hilbert Class Field for certain algebraic number fields.” 1971. Web. 07 Jun 2020.

Vancouver:

Theusch, Colleen Joan 1. Determination of the Hilbert Class Field for certain algebraic number fields. [Internet] [Doctoral dissertation]. Michigan State University; 1971. [cited 2020 Jun 07]. Available from: http://etd.lib.msu.edu/islandora/object/etd:37021.

Council of Science Editors:

Theusch, Colleen Joan 1. Determination of the Hilbert Class Field for certain algebraic number fields. [Doctoral Dissertation]. Michigan State University; 1971. Available from: http://etd.lib.msu.edu/islandora/object/etd:37021

University of Maine

16.
Rozario, Rebecca.
The Distribution of the Irreducibles in an Algebraic *Number* Field.

Degree: MS, Mathematics, 2003, University of Maine

URL: https://digitalcommons.library.umaine.edu/etd/405

► The objective of this thesis is to study the distribution of the *number* of principal ideals generated by an irreducible element in an algebraic…
(more)

Subjects/Keywords: Algebraic fields; class field theory; Algebra; Mathematics; Number Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rozario, R. (2003). The Distribution of the Irreducibles in an Algebraic Number Field. (Masters Thesis). University of Maine. Retrieved from https://digitalcommons.library.umaine.edu/etd/405

Chicago Manual of Style (16^{th} Edition):

Rozario, Rebecca. “The Distribution of the Irreducibles in an Algebraic Number Field.” 2003. Masters Thesis, University of Maine. Accessed June 07, 2020. https://digitalcommons.library.umaine.edu/etd/405.

MLA Handbook (7^{th} Edition):

Rozario, Rebecca. “The Distribution of the Irreducibles in an Algebraic Number Field.” 2003. Web. 07 Jun 2020.

Vancouver:

Rozario R. The Distribution of the Irreducibles in an Algebraic Number Field. [Internet] [Masters thesis]. University of Maine; 2003. [cited 2020 Jun 07]. Available from: https://digitalcommons.library.umaine.edu/etd/405.

Council of Science Editors:

Rozario R. The Distribution of the Irreducibles in an Algebraic Number Field. [Masters Thesis]. University of Maine; 2003. Available from: https://digitalcommons.library.umaine.edu/etd/405

17. JoÃo Victor Maximiano Albuquerque. Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados.

Degree: Master, 2013, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247 ;

►

Este trabalho Ã baseado no artigo Finiteness of the *class* group of a *number* field via lattice packings. Daremos aqui uma prova alternativa da finitude…
(more)

Subjects/Keywords: ALGEBRA; corpo de numeros; grupo das classes; geometria de nÃmeros; number fields; class groups; geometry of numbers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Albuquerque, J. V. M. (2013). Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247 ;

Chicago Manual of Style (16^{th} Edition):

Albuquerque, JoÃo Victor Maximiano. “Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados.” 2013. Masters Thesis, Universidade Federal do Ceará. Accessed June 07, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247 ;.

MLA Handbook (7^{th} Edition):

Albuquerque, JoÃo Victor Maximiano. “Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados.” 2013. Web. 07 Jun 2020.

Vancouver:

Albuquerque JVM. Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados. [Internet] [Masters thesis]. Universidade Federal do Ceará 2013. [cited 2020 Jun 07]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247 ;.

Council of Science Editors:

Albuquerque JVM. Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados. [Masters Thesis]. Universidade Federal do Ceará 2013. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247 ;

Universiteit Utrecht

18.
Smit, H.J.
Global field isomorphisms: a *class* field theoretical approach.

Degree: 2016, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/337051

► This master’s thesis, Global field isomorphisms: a *class* field theoretical approach, was written by Harry Smit from October 2015 until June 2016. It is submitted…
(more)

Subjects/Keywords: Algebraic number theory; Galois theory; Global fields; class field theory; topological groups; Dirichlet L-series; abelian extensions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Smit, H. J. (2016). Global field isomorphisms: a class field theoretical approach. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/337051

Chicago Manual of Style (16^{th} Edition):

Smit, H J. “Global field isomorphisms: a class field theoretical approach.” 2016. Masters Thesis, Universiteit Utrecht. Accessed June 07, 2020. http://dspace.library.uu.nl:8080/handle/1874/337051.

MLA Handbook (7^{th} Edition):

Smit, H J. “Global field isomorphisms: a class field theoretical approach.” 2016. Web. 07 Jun 2020.

Vancouver:

Smit HJ. Global field isomorphisms: a class field theoretical approach. [Internet] [Masters thesis]. Universiteit Utrecht; 2016. [cited 2020 Jun 07]. Available from: http://dspace.library.uu.nl:8080/handle/1874/337051.

Council of Science Editors:

Smit HJ. Global field isomorphisms: a class field theoretical approach. [Masters Thesis]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/337051

Montana Tech

19.
Kasube, Herbert Emil.
THE *CLASS* *NUMBER* OF AN ALGEBRAIC *NUMBER* FIELD: ITS INTERPRETATION AND USE.

Degree: PhD, 1979, Montana Tech

URL: https://scholarworks.umt.edu/etd/10051

Subjects/Keywords: Algebraic fields.; Class field theory.; Number theory.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kasube, H. E. (1979). THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/10051

Chicago Manual of Style (16^{th} Edition):

Kasube, Herbert Emil. “THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE.” 1979. Doctoral Dissertation, Montana Tech. Accessed June 07, 2020. https://scholarworks.umt.edu/etd/10051.

MLA Handbook (7^{th} Edition):

Kasube, Herbert Emil. “THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE.” 1979. Web. 07 Jun 2020.

Vancouver:

Kasube HE. THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE. [Internet] [Doctoral dissertation]. Montana Tech; 1979. [cited 2020 Jun 07]. Available from: https://scholarworks.umt.edu/etd/10051.

Council of Science Editors:

Kasube HE. THE CLASS NUMBER OF AN ALGEBRAIC NUMBER FIELD: ITS INTERPRETATION AND USE. [Doctoral Dissertation]. Montana Tech; 1979. Available from: https://scholarworks.umt.edu/etd/10051

Virginia Tech

20. Taylor, Frank Seaton. Quintic Abelian Fields.

Degree: PhD, Mathematics, 1997, Virginia Tech

URL: http://hdl.handle.net/10919/29662

► Quintic abelian fields are characterized in terms of their conductor and a certain Galois group. From these, a generating polynomial and its roots and an…
(more)

Subjects/Keywords: Abelian Fields; Class Number; Conductor; Fundamental Unit; Quintic Fields

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Taylor, F. S. (1997). Quintic Abelian Fields. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/29662

Chicago Manual of Style (16^{th} Edition):

Taylor, Frank Seaton. “Quintic Abelian Fields.” 1997. Doctoral Dissertation, Virginia Tech. Accessed June 07, 2020. http://hdl.handle.net/10919/29662.

MLA Handbook (7^{th} Edition):

Taylor, Frank Seaton. “Quintic Abelian Fields.” 1997. Web. 07 Jun 2020.

Vancouver:

Taylor FS. Quintic Abelian Fields. [Internet] [Doctoral dissertation]. Virginia Tech; 1997. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10919/29662.

Council of Science Editors:

Taylor FS. Quintic Abelian Fields. [Doctoral Dissertation]. Virginia Tech; 1997. Available from: http://hdl.handle.net/10919/29662

21.
Gélin, Alexandre.
Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : *Class* group computations in *number* fields and applications to cryptology.

Degree: Docteur es, Informatique, 2017, Université Pierre et Marie Curie – Paris VI

URL: http://www.theses.fr/2017PA066398

►

Dans cette thèse, nous nous intéressons au calcul du groupe de classes d'un corps de nombres. Nous débutons par décrire un algorithme de réduction du… (more)

Subjects/Keywords: Groupe de classes; Théorie des nombres; Cryptographie; Algorithmique; Cryptologie; Corps de nombres; Class groups; Cryptography; Number fields; 004

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gélin, A. (2017). Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066398

Chicago Manual of Style (16^{th} Edition):

Gélin, Alexandre. “Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed June 07, 2020. http://www.theses.fr/2017PA066398.

MLA Handbook (7^{th} Edition):

Gélin, Alexandre. “Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology.” 2017. Web. 07 Jun 2020.

Vancouver:

Gélin A. Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2020 Jun 07]. Available from: http://www.theses.fr/2017PA066398.

Council of Science Editors:

Gélin A. Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie : Class group computations in number fields and applications to cryptology. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066398

22.
Brakenhoff, Johannes Franciscus.
Counting problems for *number* rings.

Degree: 2009, Mathematical Institute, Faculty of Science, Leiden University

URL: http://hdl.handle.net/1887/14539

► In this thesis we look at three counting problems connected to orders in *number* fields. First we study the probability that for a random polynomial…
(more)

Subjects/Keywords: Algebraic number theory; Class groups; Class number; Discriminants; Maximal order; Polynomials; Quintic rings; Squarefree; Subrings; Algebraic number theory; Class groups; Class number; Discriminants; Maximal order; Polynomials; Quintic rings; Squarefree; Subrings

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brakenhoff, J. F. (2009). Counting problems for number rings. (Doctoral Dissertation). Mathematical Institute, Faculty of Science, Leiden University. Retrieved from http://hdl.handle.net/1887/14539

Chicago Manual of Style (16^{th} Edition):

Brakenhoff, Johannes Franciscus. “Counting problems for number rings.” 2009. Doctoral Dissertation, Mathematical Institute, Faculty of Science, Leiden University. Accessed June 07, 2020. http://hdl.handle.net/1887/14539.

MLA Handbook (7^{th} Edition):

Brakenhoff, Johannes Franciscus. “Counting problems for number rings.” 2009. Web. 07 Jun 2020.

Vancouver:

Brakenhoff JF. Counting problems for number rings. [Internet] [Doctoral dissertation]. Mathematical Institute, Faculty of Science, Leiden University; 2009. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1887/14539.

Council of Science Editors:

Brakenhoff JF. Counting problems for number rings. [Doctoral Dissertation]. Mathematical Institute, Faculty of Science, Leiden University; 2009. Available from: http://hdl.handle.net/1887/14539

Georgia Tech

23.
Shin, Hyunshik.
Algebraic degrees of stretch factors in mapping *class* groups.

Degree: PhD, Mathematics, 2014, Georgia Tech

URL: http://hdl.handle.net/1853/51910

► Given a closed surface Sg of genus g, a mapping *class* f in \MCG(Sg) is said to be pseudo-Anosov if it preserves a pair of…
(more)

Subjects/Keywords: Pseudo-Anosov; Stretch factor; Dilatation; Algebraic degree; Salem number; Train track; Class groups (Mathematics); Mappings (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shin, H. (2014). Algebraic degrees of stretch factors in mapping class groups. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/51910

Chicago Manual of Style (16^{th} Edition):

Shin, Hyunshik. “Algebraic degrees of stretch factors in mapping class groups.” 2014. Doctoral Dissertation, Georgia Tech. Accessed June 07, 2020. http://hdl.handle.net/1853/51910.

MLA Handbook (7^{th} Edition):

Shin, Hyunshik. “Algebraic degrees of stretch factors in mapping class groups.” 2014. Web. 07 Jun 2020.

Vancouver:

Shin H. Algebraic degrees of stretch factors in mapping class groups. [Internet] [Doctoral dissertation]. Georgia Tech; 2014. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1853/51910.

Council of Science Editors:

Shin H. Algebraic degrees of stretch factors in mapping class groups. [Doctoral Dissertation]. Georgia Tech; 2014. Available from: http://hdl.handle.net/1853/51910

Virginia Tech

24.
Chalmeta, A. Pablo.
On the Units and the Structure of the 3-Sylow Subgroups of the Ideal *Class* Groups of Pure Bicubic Fields and their Normal Closures.

Degree: PhD, Mathematics, 2006, Virginia Tech

URL: http://hdl.handle.net/10919/29191

► If we adjoin the cube root of a cube free rational integer <i>m</i> to the rational numbers we construct a cubic field. If we adjoin…
(more)

Subjects/Keywords: Bicubic Fields; Invariants; Ideal Class Group; Normal Closure; Class Number

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chalmeta, A. P. (2006). On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/29191

Chicago Manual of Style (16^{th} Edition):

Chalmeta, A Pablo. “On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures.” 2006. Doctoral Dissertation, Virginia Tech. Accessed June 07, 2020. http://hdl.handle.net/10919/29191.

MLA Handbook (7^{th} Edition):

Chalmeta, A Pablo. “On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures.” 2006. Web. 07 Jun 2020.

Vancouver:

Chalmeta AP. On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures. [Internet] [Doctoral dissertation]. Virginia Tech; 2006. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10919/29191.

Council of Science Editors:

Chalmeta AP. On the Units and the Structure of the 3-Sylow Subgroups of the Ideal Class Groups of Pure Bicubic Fields and their Normal Closures. [Doctoral Dissertation]. Virginia Tech; 2006. Available from: http://hdl.handle.net/10919/29191

25.
Ward, Kenneth A.
Asymptotics Of *Class* *Number* And Genus For Abelian Extensions Of An Algebraic Function Field.

Degree: Department of Mathematics, 2012, Oklahoma State University

URL: http://hdl.handle.net/11244/6834

► Among abelian extensions of a congruence function field, an asymptotic relation of *class* *number* and genus is established. The proof is completely classical, employing well-known…
(more)

Subjects/Keywords: abelian; asymptotic; class field theory; class number; function field; genus

…Fg
F
n
In general, the asymptotic relationship between *class* *number* and genus remains
an… …for finite normal extensions K of Q with *class* *number* hK , regulator RK , and
discriminant… …The work of Inaba depends upon an estimate for the *number* of integral divisors of
degree… …extension is equal to Fq [38].
By use of a result in *class* field theory that employs the… …global *class* field theory that
the Artin map of a finite, unramified, and abelian extension of…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ward, K. A. (2012). Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field. (Thesis). Oklahoma State University. Retrieved from http://hdl.handle.net/11244/6834

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ward, Kenneth A. “Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field.” 2012. Thesis, Oklahoma State University. Accessed June 07, 2020. http://hdl.handle.net/11244/6834.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ward, Kenneth A. “Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field.” 2012. Web. 07 Jun 2020.

Vancouver:

Ward KA. Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field. [Internet] [Thesis]. Oklahoma State University; 2012. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/11244/6834.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ward KA. Asymptotics Of Class Number And Genus For Abelian Extensions Of An Algebraic Function Field. [Thesis]. Oklahoma State University; 2012. Available from: http://hdl.handle.net/11244/6834

Not specified: Masters Thesis or Doctoral Dissertation

Leiden University

26.
Kilicer, P.
The CM *class* *number* one problem for curves.

Degree: 2016, Leiden University

URL: http://hdl.handle.net/1887/41145

► The main *class*="hilite">subject of this thesis is the CM *class* *number* one problem for curves of genus g, in the cases g=2 and g=3. The…
(more)

Subjects/Keywords: Complex multiplication; CM curves; Class number one; Field of definition; Complex multiplication; CM curves; Class number one; Field of definition

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kilicer, P. (2016). The CM class number one problem for curves. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/41145

Chicago Manual of Style (16^{th} Edition):

Kilicer, P. “The CM class number one problem for curves.” 2016. Doctoral Dissertation, Leiden University. Accessed June 07, 2020. http://hdl.handle.net/1887/41145.

MLA Handbook (7^{th} Edition):

Kilicer, P. “The CM class number one problem for curves.” 2016. Web. 07 Jun 2020.

Vancouver:

Kilicer P. The CM class number one problem for curves. [Internet] [Doctoral dissertation]. Leiden University; 2016. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1887/41145.

Council of Science Editors:

Kilicer P. The CM class number one problem for curves. [Doctoral Dissertation]. Leiden University; 2016. Available from: http://hdl.handle.net/1887/41145

Leiden University

27.
Milovic, D.
On the 16-rank of *class* groups of quadratic *number* fields.

Degree: 2016, Leiden University

URL: http://hdl.handle.net/1887/42085

► We prove two new density results about 16-ranks of *class* groups of quadratic *number* fields. They can be stated informally as follows. Let C(D) denote…
(more)

Subjects/Keywords: Number theory; Arithmetic statistics; Class groups; Sieve methods; Number theory; Arithmetic statistics; Class groups; Sieve methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Milovic, D. (2016). On the 16-rank of class groups of quadratic number fields. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/42085

Chicago Manual of Style (16^{th} Edition):

Milovic, D. “On the 16-rank of class groups of quadratic number fields.” 2016. Doctoral Dissertation, Leiden University. Accessed June 07, 2020. http://hdl.handle.net/1887/42085.

MLA Handbook (7^{th} Edition):

Milovic, D. “On the 16-rank of class groups of quadratic number fields.” 2016. Web. 07 Jun 2020.

Vancouver:

Milovic D. On the 16-rank of class groups of quadratic number fields. [Internet] [Doctoral dissertation]. Leiden University; 2016. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1887/42085.

Council of Science Editors:

Milovic D. On the 16-rank of class groups of quadratic number fields. [Doctoral Dissertation]. Leiden University; 2016. Available from: http://hdl.handle.net/1887/42085

28. Ferreira, Luan Alberto. Teoria de corpos de classe e aplicações.

Degree: Mestrado, Matemática, 2012, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05122012-102820/ ;

►

Neste projeto, propomos estudar a chamada \"Teoria de Corpos de Classe,q̈ue oferece uma descrição simples das extensões abelianas de corpos locais e globais, bem como… (more)

Subjects/Keywords: Abelian extensions; Algebraic number theory; Class field theory; Corpos ciclotômicos; Cyclotomic fields; Extensões abelianas; Inverse Galois problem; Problema inverso de Galois; Teoria algébrica dos números; Teoria de corpos de classe

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ferreira, L. A. (2012). Teoria de corpos de classe e aplicações. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05122012-102820/ ;

Chicago Manual of Style (16^{th} Edition):

Ferreira, Luan Alberto. “Teoria de corpos de classe e aplicações.” 2012. Masters Thesis, University of São Paulo. Accessed June 07, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05122012-102820/ ;.

MLA Handbook (7^{th} Edition):

Ferreira, Luan Alberto. “Teoria de corpos de classe e aplicações.” 2012. Web. 07 Jun 2020.

Vancouver:

Ferreira LA. Teoria de corpos de classe e aplicações. [Internet] [Masters thesis]. University of São Paulo; 2012. [cited 2020 Jun 07]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05122012-102820/ ;.

Council of Science Editors:

Ferreira LA. Teoria de corpos de classe e aplicações. [Masters Thesis]. University of São Paulo; 2012. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05122012-102820/ ;

29.
All, Timothy James.
On the Galois module structure of the units and ray classes
of a real abelian *number* field.

Degree: PhD, Mathematics, 2013, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1365594642

► We study the Galois module structure of the ideal ray *class* group and the group of units of a real abelian *number* field. Specifically, we…
(more)

Subjects/Keywords: Mathematics; real abelian number field; class group; Stickelberger; units

…x5B;R− : S−
k ] = hpn where hpn is the relative *class* *number* of Q(ζpn ).
1… …is the *class* *number* of k.
Once again, for general abelian *number* fields, Sinnott [16… …CHAPTER 1
INTRODUCTION
1.1 History
Let k be an abelian *number* field of conductor m. Let… …For any real x, let {x} denote the
unique real *number* such that x − {x}… …the ideal *class* group of k.
Stickelberger’s theorem follows by studying the factorization of…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

All, T. J. (2013). On the Galois module structure of the units and ray classes of a real abelian number field. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1365594642

Chicago Manual of Style (16^{th} Edition):

All, Timothy James. “On the Galois module structure of the units and ray classes of a real abelian number field.” 2013. Doctoral Dissertation, The Ohio State University. Accessed June 07, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1365594642.

MLA Handbook (7^{th} Edition):

All, Timothy James. “On the Galois module structure of the units and ray classes of a real abelian number field.” 2013. Web. 07 Jun 2020.

Vancouver:

All TJ. On the Galois module structure of the units and ray classes of a real abelian number field. [Internet] [Doctoral dissertation]. The Ohio State University; 2013. [cited 2020 Jun 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1365594642.

Council of Science Editors:

All TJ. On the Galois module structure of the units and ray classes of a real abelian number field. [Doctoral Dissertation]. The Ohio State University; 2013. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1365594642

30. Sinclair, Brian. Algorithms for enumerating invariants and extensions of local fields.

Degree: 2015, University of North Carolina – Greensboro

URL: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=18186

► There are many computationally difficult problems in the study of p-adic fields, among them the classification of field extensions and the decomposition of global ideals.…
(more)

Subjects/Keywords: Class field theory; p-adic fields; Number theory

…Kronecker's work on the factoring of prime ideals in *number* elds when he
namely the functions… …properties of a
function by expanding functions locally, should be translatable to *number* theory… …series expansion of a rational *number*
*number*
r ∈ Q in terms of powers of a prime
p,
1
r… …X
ri pi .
i=N
Hensel called this series the
p-adic
nal *number* can be expressed
about… …near
r
near
p,
expansion of r.
p-adically
With respect to a prime *number*
in this way…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sinclair, B. (2015). Algorithms for enumerating invariants and extensions of local fields. (Doctoral Dissertation). University of North Carolina – Greensboro. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=18186

Chicago Manual of Style (16^{th} Edition):

Sinclair, Brian. “Algorithms for enumerating invariants and extensions of local fields.” 2015. Doctoral Dissertation, University of North Carolina – Greensboro. Accessed June 07, 2020. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=18186.

MLA Handbook (7^{th} Edition):

Sinclair, Brian. “Algorithms for enumerating invariants and extensions of local fields.” 2015. Web. 07 Jun 2020.

Vancouver:

Sinclair B. Algorithms for enumerating invariants and extensions of local fields. [Internet] [Doctoral dissertation]. University of North Carolina – Greensboro; 2015. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=18186.

Council of Science Editors:

Sinclair B. Algorithms for enumerating invariants and extensions of local fields. [Doctoral Dissertation]. University of North Carolina – Greensboro; 2015. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=18186