Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for publisher:("Universidad Nacional de Educaci??n a Distancia (Espa??a). Facultad de Ciencias. Departamento de Matem??tica Aplicada"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Huerga Pastor, Lidia. Soluciones propias aproximadas de problemas de optimizaci??n vectorial.

Degree: 2014, Universidad Nacional de Educaci??n a Distancia (Espa??a). Facultad de Ciencias. Departamento de Matem??tica Aplicada

Se introduce un concepto de soluci??n propia aproximada de problemas de optimizaci??nvectorial. Esta noci??n se define con la finalidad de obtener un conjunto de soluciones aproximadas que represente bien al conjunto eficiente salvo un peque??o error, lo que se traduce en que el l??mite superior de Painlev??-Kuratowski del conjunto formado por estas soluciones, .cuando el error de precisi??n tiende a cero, est?? incluido en el conjunto de soluciones eficientes exacta.s. Esta propiedad esencial no es com??n enlas nociones de eficiencia propia aproximada, de forma que, con frecuencia, estos conceptos pueden generar sucesiones de soluciones aproximadas que se alejan del conjunto eficiente tanto como se quiera, La memoria se vertebra. en tomo al estudio de estas soluciones. Concretamente, se .analizan sus propiedades y se caracterizan mediante esca]arizaci??n lineal bajo condiciones de convexidad generalizada.Adem??s, se utilizan para definir un concepto de punto de silla. propio aproximado e introducir. y estudiar problemas duales aproximados y una e-subdiferencial propia de funciones vectoriales. Los problemas duales introducidos son ambos de tipo Lagrangiano. El primero se define mediante una Lagrangiana escalar y el segundo mediante una multifunci??n Lagrangiana, que generaliza las Lagrangianas vectoriales m??s importantes de la literatura. Se obtienen teoremas de dualidad d??bil y fuerte bajo condiciones de estabilidad y convexidad generalizada, que relacionan los maximales aproximados de cada problema dual con estas nuevas soluciones propias aproximadas del primal. La E-subdiferencial propia definida se caracteriza a trav??s de E-subgradientes de funciones escalares, asumiendo condiciones de convexidad generalizada y es apropiada para tratar con sucesiones minimizantes. Finalmente, se prueban para estasubdiferencial propia aproximada reglas de c??lculo de tipo Moreau-Rockafellar y reglas de la cadena. Advisors/Committee Members: Novo Sanjurjo, Vicente (Director de Tesis), Guti??rrez Vaquero, C??sar (Codirector de Tesis).

Subjects/Keywords: Matem??ticas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huerga Pastor, L. (2014). Soluciones propias aproximadas de problemas de optimizaci??n vectorial. (Thesis). Universidad Nacional de Educaci??n a Distancia (Espa??a). Facultad de Ciencias. Departamento de Matem??tica Aplicada. Retrieved from http://e-spacio.uned.es/fez/view.php?pid=tesisuned:Ciencias-Lhuerga

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Huerga Pastor, Lidia. “Soluciones propias aproximadas de problemas de optimizaci??n vectorial.” 2014. Thesis, Universidad Nacional de Educaci??n a Distancia (Espa??a). Facultad de Ciencias. Departamento de Matem??tica Aplicada. Accessed December 09, 2019. http://e-spacio.uned.es/fez/view.php?pid=tesisuned:Ciencias-Lhuerga.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Huerga Pastor, Lidia. “Soluciones propias aproximadas de problemas de optimizaci??n vectorial.” 2014. Web. 09 Dec 2019.

Vancouver:

Huerga Pastor L. Soluciones propias aproximadas de problemas de optimizaci??n vectorial. [Internet] [Thesis]. Universidad Nacional de Educaci??n a Distancia (Espa??a). Facultad de Ciencias. Departamento de Matem??tica Aplicada; 2014. [cited 2019 Dec 09]. Available from: http://e-spacio.uned.es/fez/view.php?pid=tesisuned:Ciencias-Lhuerga.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Huerga Pastor L. Soluciones propias aproximadas de problemas de optimizaci??n vectorial. [Thesis]. Universidad Nacional de Educaci??n a Distancia (Espa??a). Facultad de Ciencias. Departamento de Matem??tica Aplicada; 2014. Available from: http://e-spacio.uned.es/fez/view.php?pid=tesisuned:Ciencias-Lhuerga

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.