Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"oai:tigerprints.clemson.edu:all_dissertations-3455". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Clemson University

1. Maharaja, Hetal Umesh. Electrochemical Assessment of Alumina-TiC Composite: A Potential Biomaterial.

Degree: PhD, Bioengineering, 2019, Clemson University

Ceramic and ceramic composites are gaining popularity over their metallic counterparts for orthopedic applications. Metallic biomaterials, like titanium alloys and CoCrMo alloy, exhibit good performance under concentrated loads but there have been plenty cases of implant failure due to release of metallic debris causing osteolysis. The wear debris release is caused by mechanically assisted electrochemical degradation of contacting surfaces at the joint. Ceramic based biomaterials have shown to exhibit superior wear performance, but they are prone to brittle fracture. Hence modern ceramic materials are reinforced with oxides, nitride and carbides too improve fracture resistance. However, nitrides and carbides reinforcement impart electrochemical activity to ceramic composite and facilitate electron transfer processes and participate in electrochemical interaction with aqueous environment. The electrochemical behavior of ceramic composites with electrochemically active reinforcement needs to be evaluated to account for any undesirable electrochemical activity for invivo applications. This research presents, a detailed investigation of electrochemical behavior of alumina-titanium Carbide (TiC) composite and valuable insights into the potential use of alumina-TiC as a biomaterial. A systematic analysis of electrochemical behavior under mechanical perturbation like abrasive wear was performed and related degradation mechanism was uncovered with combination of quantitative and qualitative methods. For a better understanding of the reaction mechanism involved in the degradation process of alumina-TiC composite, studies in the forms of experimental, theoretical and computational investigation have been performed. Using the concepts of thermodynamics and electrochemical reaction kinetics like Butler-Volmer theory along with Nernst-Planck transport phenomenon, a great deal of insights into the reaction mechanism for oxidation of TiC was developed. Moreover, a potential use of alumina-TiC composite as a biomaterial was assessed in biologically relevant environment. The electrochemical behavior and cytocompatible nature of the composite was investigated and compared with common metallic biomaterials like commercially pure titanium (Cp-Ti) and graphite covered CoCrMo alloy (GC-CoCrMo). After thorough analysis and supporting observations from surface and chemical analysis methods, it was concluded that alumina-TiC is electrochemically stable material than metallic biomaterials and it also favorably supports HB-MSC cell growth and proliferation. Advisors/Committee Members: Martine Laberge, Committee Chair, Guigen Zhang, Jeremy Mercuri, Fei Peng, Mark Roberts.

Subjects/Keywords: abrasion; alumina-TiC; biomaterial; ceramic composite; degradation; electrochemical

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maharaja, H. U. (2019). Electrochemical Assessment of Alumina-TiC Composite: A Potential Biomaterial. (Doctoral Dissertation). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_dissertations/2451

Chicago Manual of Style (16th Edition):

Maharaja, Hetal Umesh. “Electrochemical Assessment of Alumina-TiC Composite: A Potential Biomaterial.” 2019. Doctoral Dissertation, Clemson University. Accessed September 19, 2019. https://tigerprints.clemson.edu/all_dissertations/2451.

MLA Handbook (7th Edition):

Maharaja, Hetal Umesh. “Electrochemical Assessment of Alumina-TiC Composite: A Potential Biomaterial.” 2019. Web. 19 Sep 2019.

Vancouver:

Maharaja HU. Electrochemical Assessment of Alumina-TiC Composite: A Potential Biomaterial. [Internet] [Doctoral dissertation]. Clemson University; 2019. [cited 2019 Sep 19]. Available from: https://tigerprints.clemson.edu/all_dissertations/2451.

Council of Science Editors:

Maharaja HU. Electrochemical Assessment of Alumina-TiC Composite: A Potential Biomaterial. [Doctoral Dissertation]. Clemson University; 2019. Available from: https://tigerprints.clemson.edu/all_dissertations/2451

.