Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"oai:tigerprints.clemson.edu:all_dissertations-2940". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Clemson University

1. Riddell, Eric Alexander. Ecological consequences of water loss under climate change in small ectotherms.

Degree: PhD, Biological Sciences, 2017, Clemson University

Warming climates threaten to reduce biodiversity across the planet, yet the capacity of organisms to minimize the effects of climate change are rarely considered in current ecological predictions of climate change. Organisms can minimize the effect of warming through behavioral, physiological, and morphological processes that limit exposure to lethal conditions or improve performance. Therefore, integrating these mechanisms into ecological models might improve predictions on the loss of biodiversity under climate change. For my dissertation, I focus on the physiological processes that influence habitat suitability in a group of terrestrial, lungless salamanders (Plethodon spp.) found in the core of the global hotspot of salamander diversity. These salamanders may suffer from the risk of dehydration due to their high rates of water loss and the potential rise in evaporation rates under climate change. Therefore, I focused on the ecological consequences of skin resistance to water loss, the most physiologically-informative metric of water loss. I used a combination of physiological experiments and species distribution modeling to demonstrate that skin resistance to water loss might limit the spatial distribution of these species. Laboratory experiments uncovered plasticity of skin resistance to water loss that could potentially buffer salamanders from the consequences of warming. However, ecological predictions from species distribution models indicate that physiological and behavioral plasticity were insufficient strategies to avoid extinction under climate change. Upon modeling historic climate change, plasticity in seasonal activity and dispersal capacities represent critical strategies that might have promoted persistence during extreme climatic oscillations at the end of the Pleistocene epoch. Further experiments demonstrated that the ecological benefits of limiting water loss might be determined by trade-offs between skin resistance to water loss and metabolism. These results demonstrate that incorporating physiological mechanism represent an important component of predicting ecological dynamics. Advisors/Committee Members: Michael Sears, Committee Chair, Christina Wells, Kelly Zamudio, Robert Baldwin.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Riddell, E. A. (2017). Ecological consequences of water loss under climate change in small ectotherms. (Doctoral Dissertation). Clemson University. Retrieved from http://tigerprints.clemson.edu/all_dissertations/1938

Chicago Manual of Style (16th Edition):

Riddell, Eric Alexander. “Ecological consequences of water loss under climate change in small ectotherms.” 2017. Doctoral Dissertation, Clemson University. Accessed June 26, 2017. http://tigerprints.clemson.edu/all_dissertations/1938.

MLA Handbook (7th Edition):

Riddell, Eric Alexander. “Ecological consequences of water loss under climate change in small ectotherms.” 2017. Web. 26 Jun 2017.

Vancouver:

Riddell EA. Ecological consequences of water loss under climate change in small ectotherms. [Internet] [Doctoral dissertation]. Clemson University; 2017. [cited 2017 Jun 26]. Available from: http://tigerprints.clemson.edu/all_dissertations/1938.

Council of Science Editors:

Riddell EA. Ecological consequences of water loss under climate change in small ectotherms. [Doctoral Dissertation]. Clemson University; 2017. Available from: http://tigerprints.clemson.edu/all_dissertations/1938

.