Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"oai:scholarworks.gsu.edu:phy_astr_diss-1122". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Georgia State University

1. Norris, Ryan P. Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants.

Degree: PhD, Physics and Astronomy, 2019, Georgia State University

Red supergiants (RSGs) are cool, luminous stars with radii that can exceed 1000 R. Indeed, such is their size that nearly every advance in stellar imaging has used the closest RSG, Betelgeuse, as a test case! These objects represent a late stage in the evolution of some massive stars, and, via their mass-loss and eventual demise in supernovae, they play an important role in the chemical evolution of the Universe. Moreover, their high luminosities have made them an object of interest for astronomers studying nearby galaxies. As a result of their increasingly broad use in astronomy, a solid understanding of RSGs and in the limitations of models of these objects is important. One of the biggest challenges in modeling red supergiants is convection. In RSGs, granules and convection cells are quite large relative to the size of the star – with granules roughly 0.10-0.30 R*. and convection cells at least 0.50 R*. This results in large surface features that can be studied using optical interferometry, but which can also corrupt measurements of parallax and other stellar parameters. Increasingly, there exist models of RSGs which take into account this behavior, but it is important to constrain these models with actual observations. In this dissertation, we present a long-term study of surface features on RSGs using the Michigan InfraRed Combiner (MIRC/MIRC-X after 2016) at the Center for High Angular Resolution (CHARA) Astronomy Array on Mt. Wilson. Images resulting from these data are among the highest resolution obtained for any star (apart from the Sun). Fitting to model spectra, we derive Teff= 3989±117 K and log(g)=0.29±0.26 for the RSG AZ Cyg and Teff= 3650±50 K and log(g)=0.30±0.26 for the RSG SU Per. We also determine radii for 17 RSGs including AZ Cyg and SU Per. We reconstruct images of AZ Cyg from 2011, 2012, 2014, 2015 and 2016, and reconstruct images of SU Per from 2015 and two months in 2016. In both cases, we find evidence of long lived (>1 year) features roughly 0.50 R* in size and short lived (<1 year) features roughly 0.10 R* in size. We compare these observations to predictions from 2D and 3D models. We also discuss future directions for studying RSGs using optical interferometric imaging. Advisors/Committee Members: Fabien Baron, Douglas Gies, Russel White, John Monnier.

Subjects/Keywords: convection; red supergiant; AZ Cyg; SU Per; high angular resolution imaging; optical interferometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Norris, R. P. (2019). Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants. (Doctoral Dissertation). Georgia State University. Retrieved from https://scholarworks.gsu.edu/phy_astr_diss/118

Chicago Manual of Style (16th Edition):

Norris, Ryan P. “Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants.” 2019. Doctoral Dissertation, Georgia State University. Accessed August 24, 2019. https://scholarworks.gsu.edu/phy_astr_diss/118.

MLA Handbook (7th Edition):

Norris, Ryan P. “Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants.” 2019. Web. 24 Aug 2019.

Vancouver:

Norris RP. Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants. [Internet] [Doctoral dissertation]. Georgia State University; 2019. [cited 2019 Aug 24]. Available from: https://scholarworks.gsu.edu/phy_astr_diss/118.

Council of Science Editors:

Norris RP. Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants. [Doctoral Dissertation]. Georgia State University; 2019. Available from: https://scholarworks.gsu.edu/phy_astr_diss/118

.