Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"oai:openscholarship.wustl.edu:eng_etds-1423". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Washington University in St. Louis

1. Zhang, Mengxue. Forward Electrophysiological Modeling and Inverse Problem for Uterine Contractions during Pregnancy.

Degree: PhD, Electrical & Systems Engineering, 2018, Washington University in St. Louis

Uterine contractile dysfunction during pregnancy is a significant healthcare challenge that imposes heavy medical and financial burdens on both human beings and society. In the U.S., about 12% of babies are born prematurely each year, which is a leading cause of neonatal mortality and increases the possibility of having subsequent health problems. Post-term birth, in which a baby is born after 42 weeks of gestation, can cause risks for both the newborn and the mother. Currently, there is a limited understanding of how the uterus transitions from quiescence to excitation, which hampers our ability to detect labor and treat major obstetric syndromes associated with contractile dysfunction. Therefore, it is critical to develop objective methods to investigate the underlying contractile mechanism using a non-invasive sensing technique. This dissertation focuses on the multiscale forward electromagnetic modeling of uterine contractile activities and the inverse estimation of underlying source currents from abdominal magnetic field measurements. We develop a realistic multiscale forward electromagnetic model of uterine contractions in the pregnant uterus, taking into account current electrophysiological and anatomical knowledge of the uterus. Previous models focused on generating contractile forces at the organ level or on ionic concentration changes at the cellular level. Our approach is to characterize the electromagnetic fields of uterine contractions jointly at the cellular, tissue, and organ levels. At the cellular level, focusing on both plateau-type and bursting-type action potentials, we introduce a generalized version of the FitzHugh-Nagumo equations and analyze its response behavior based on bifurcation theory. To represent the anisotropy of the myometrium, we introduce a random conductivity tensor model for the fiber orientations at the tissue level. Specifically, we divide the uterus into contiguous regions, each of which is assigned a random fiber angle. We also derive analytical expressions for the spiking frequency and propagation velocity of the bursting potential. At the organ level, we propose a realistic four-compartment volume conductor, in which the uterus is modeled based on the magnetic resonance imaging scans of a near-term woman and the abdomen is curved to match the device used to take the magnetomyography measurements. To mimic the effect of the sensing direction, we incorporate a sensor array model on the surface of abdomen. We illustrate our approach using numerical examples and compute the magnetic field using the finite element method. Our results show that fiber orientation and initiation location are the key factors affecting the magnetic field pattern, and that our multiscale forward model flexibly characterizes the limited-propagation local contractions at term. These results are potentially important as a tool for interpreting the non-invasive measurements of uterine contractions. We also consider the inverse problem of uterine contractions during pregnancy. Our aim is to… Advisors/Committee Members: Arye Nehorai, Mark A. Anastasio, R. Martin Arthur, Hari Eswaran, Lan Yang.

Subjects/Keywords: inverse problem; magnetomyography; multiscale model; uterine contractions; uterine source currents; Biomedical Engineering and Bioengineering; Electrical and Electronics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, M. (2018). Forward Electrophysiological Modeling and Inverse Problem for Uterine Contractions during Pregnancy. (Doctoral Dissertation). Washington University in St. Louis. Retrieved from https://openscholarship.wustl.edu/eng_etds/384

Chicago Manual of Style (16th Edition):

Zhang, Mengxue. “Forward Electrophysiological Modeling and Inverse Problem for Uterine Contractions during Pregnancy.” 2018. Doctoral Dissertation, Washington University in St. Louis. Accessed November 17, 2018. https://openscholarship.wustl.edu/eng_etds/384.

MLA Handbook (7th Edition):

Zhang, Mengxue. “Forward Electrophysiological Modeling and Inverse Problem for Uterine Contractions during Pregnancy.” 2018. Web. 17 Nov 2018.

Vancouver:

Zhang M. Forward Electrophysiological Modeling and Inverse Problem for Uterine Contractions during Pregnancy. [Internet] [Doctoral dissertation]. Washington University in St. Louis; 2018. [cited 2018 Nov 17]. Available from: https://openscholarship.wustl.edu/eng_etds/384.

Council of Science Editors:

Zhang M. Forward Electrophysiological Modeling and Inverse Problem for Uterine Contractions during Pregnancy. [Doctoral Dissertation]. Washington University in St. Louis; 2018. Available from: https://openscholarship.wustl.edu/eng_etds/384

.