Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"oai:openscholarship.wustl.edu:art_sci_etds-2645". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Washington University in St. Louis

1. Bulow, Christopher. A Mechanism of Antimicrobial Resistance and a Mitigation Strategy.

Degree: PhD, Biology & Biomedical Sciences (Molecular Genetics & Genomics), 2018, Washington University in St. Louis

ABSTRACT OF THE DISSERTATION A Mechanism of Antimicrobial Resistance and a Mitigation Strategy by Christopher Bulow Doctor of Philosophy in Biology and Biomedical Sciences Molecular Genetics and Genomics Washington University in St. Louis, 2018 Professor Gautam Dantas, Chair The ability to treat infections, perform surgery, and administer immunosuppressants and chemotherapy depends on effective antibiotics. The emergence and spread of antimicrobial resistance is far outpacing the development of new therapies1-3 threatening to thrust medicine into a post-antibiotic era4. Many mechanisms of antimicrobial action and of antimicrobial resistance remain poorly understood as drug development struggles to keep pace. As resistance develops, the human gut serves as a reservoir and provides ample opportunities for resistance gene transmission between commensal and pathogenic bacteria5-11. Once resistant organisms colonize the gut, they can persist for extended durations even without continued antimicrobial exposure6-12. New approaches are necessary to prevent or reverse colonization with resistant organisms. This work takes two important steps to addressing the antimicrobial resistance crisis: 1) Understanding an antimicrobial mechanism of action and a corresponding mechanism of resistance and 2) Developing an approach to prevent or reverse colonization of human hosts with resistant organisms. Daptomycin, a broad spectrum antibiotic used for treating multi-drug resistant Gram-positive infections, is experiencing clinical failure against important infectious agents including Corynebacterium striatum, an opportunistic pathogen and skin commensal. The recent transition of daptomycin to generic status is projected to dramatically increase availability, use, and clinical failure. Here we confirm the genetic mechanism of high-level daptomycin resistance (HLDR, MIC > 256 g/mL) in C. striatum, which evolved within a patient during daptomycin therapy. This work demonstrates that loss of function mutation in pgsA2 and the loss of membrane PG is necessary and sufficient to produce high-level resistance to daptomycin in C. striatum. This elimination of PG and the absence of additional compensatory changes support the conclusion that PG is the target of daptomycin. This work highlights the importance of understanding how different bacterial species respond to lipopeptide antibiotics. Drugs that target membrane components may vary in efficacy by species due to differing abilities of species to alter or remove various membrane components. Strategies to prevent infection by multidrug-resistant organisms (MDROs) are scarce; however, autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking oneŇ│ feces during a healthy state for later use in restoring gut microbiota following perturbation. In this pilot clinical trial involving 10 healthy participants, autoFMT was safe and well tolerated in the ten participants evaluated.… Advisors/Committee Members: Gautam Dantas, Gautam Dantas, Megan Baldridge, Michael Brent, Carey-Ann Burnham.

Subjects/Keywords: antimicrobial resistance, genomics, lipidomics, microbiome, transcriptomics; Bioinformatics; Genetics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bulow, C. (2018). A Mechanism of Antimicrobial Resistance and a Mitigation Strategy. (Doctoral Dissertation). Washington University in St. Louis. Retrieved from https://openscholarship.wustl.edu/art_sci_etds/1612

Chicago Manual of Style (16th Edition):

Bulow, Christopher. “A Mechanism of Antimicrobial Resistance and a Mitigation Strategy.” 2018. Doctoral Dissertation, Washington University in St. Louis. Accessed December 16, 2018. https://openscholarship.wustl.edu/art_sci_etds/1612.

MLA Handbook (7th Edition):

Bulow, Christopher. “A Mechanism of Antimicrobial Resistance and a Mitigation Strategy.” 2018. Web. 16 Dec 2018.

Vancouver:

Bulow C. A Mechanism of Antimicrobial Resistance and a Mitigation Strategy. [Internet] [Doctoral dissertation]. Washington University in St. Louis; 2018. [cited 2018 Dec 16]. Available from: https://openscholarship.wustl.edu/art_sci_etds/1612.

Council of Science Editors:

Bulow C. A Mechanism of Antimicrobial Resistance and a Mitigation Strategy. [Doctoral Dissertation]. Washington University in St. Louis; 2018. Available from: https://openscholarship.wustl.edu/art_sci_etds/1612

.