Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"oai:opencommons.uconn.edu:dissertations-8234". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Connecticut

1. Maier, Franz. Multiaxial Mechanics of Human Articular Cartilage in Health and Osteoarthritis.

Degree: PhD, Mechanical Engineering, 2018, University of Connecticut

Cartilage covers the articulating bones in all synovial joints throughout the body, providing a wear-resistant, low-friction surface. Complex interactions of solid (collagen and proteoglycans) and fluid (water and dissolved ions) maintain the tissue’s load- bearing properties. Osteoarthritis burdens approximately 20% of the population in the United States, and its prevalence is projected to increase. With progressing disease, the tissue’s constituents alter in composition and structure, resulting in a downward cascade of degeneration. In this work we determined the location dependent multiaxial properties of human cartilage. We found strain dependent anisotropy and significant inter-joint variability in mechanical strength and energy dissipation in healthy human tissue. Subsequently we investigated the mechanical response of tissue harvested from patients undergoing total knee arthroplasty. We correlated mechanical metrics with tissue composition and structure, assessed biochemically and histologically. We found a significant reduction in mechanical strength with moderate disease and a reduction in anisotropy. More importantly, we observed a significant reduction in energy dissipation, preceding changes in tissue composition, in tissue representing the onset of the disease. A detailed analysis of the through-thickness shear strain distribution, obtained via digital image correlation, revealed significant changes in the depth-dependent mechanical response. Tissue deformation in the bottom 30% of the thickness reduces with mild structural remodeling and disease progression. Those changes in the mechanobiological environment of the tissue’s cell might further deregulate the cell response and progress the disease. We successfully measured depth-dependent multiaxial properties of cartilage undergoing large strains and identified two potential biomarkers for the early detection of osteoarthritis. Advisors/Committee Members: David M. Pierce, Eric H. Jordan, Bin Feng, Ying Li.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maier, F. (2018). Multiaxial Mechanics of Human Articular Cartilage in Health and Osteoarthritis. (Doctoral Dissertation). University of Connecticut. Retrieved from https://opencommons.uconn.edu/dissertations/1962

Chicago Manual of Style (16th Edition):

Maier, Franz. “Multiaxial Mechanics of Human Articular Cartilage in Health and Osteoarthritis.” 2018. Doctoral Dissertation, University of Connecticut. Accessed October 16, 2018. https://opencommons.uconn.edu/dissertations/1962.

MLA Handbook (7th Edition):

Maier, Franz. “Multiaxial Mechanics of Human Articular Cartilage in Health and Osteoarthritis.” 2018. Web. 16 Oct 2018.

Vancouver:

Maier F. Multiaxial Mechanics of Human Articular Cartilage in Health and Osteoarthritis. [Internet] [Doctoral dissertation]. University of Connecticut; 2018. [cited 2018 Oct 16]. Available from: https://opencommons.uconn.edu/dissertations/1962.

Council of Science Editors:

Maier F. Multiaxial Mechanics of Human Articular Cartilage in Health and Osteoarthritis. [Doctoral Dissertation]. University of Connecticut; 2018. Available from: https://opencommons.uconn.edu/dissertations/1962

.