Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"oai:generic.eprints.org:8284". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Glasgow

1. Drofelnik, Jernej. Massively parallel time- and frequency-domain Navier-Stokes Computational Fluid Dynamics analysis of wind turbine and oscillating wing unsteady flows.

Degree: PhD, 2017, University of Glasgow

Increasing interest in renewable energy sources for electricity production complying with stricter environmental policies has greatly contributed to further optimisation of existing devices and the development of novel renewable energy generation systems. The research and development of these advanced systems is tightly bound to the use of reliable design methods, which enable accurate and efficient design. Reynolds-averaged Navier-Stokes Computational Fluid Dynamics is one of the design methods that may be used to accurately analyse complex flows past current and forthcoming renewable energy fluid machinery such as wind turbines and oscillating wings for marine power generation. The use of this simulation technology offers a deeper insight into the complex flow physics of renewable energy machines than the lower-fidelity methods widely used in industry. The complex flows past these devices, which are characterised by highly unsteady and, often, predominantly periodic behaviour, can significantly affect power production and structural loads. Therefore, such flows need to be accurately predicted. The research work presented in this thesis deals with the development of a novel, accurate, scalable, massively parallel CFD research code COSA for general fluid-based renewable energy applications. The research work also demonstrates the capabilities of newly developed solvers of COSA by investigating complex three-dimensional unsteady periodic flows past oscillating wings and horizontal-axis wind turbines. Oscillating wings for the extraction of energy from an oncoming water or air stream, feature highly unsteady hydrodynamics. The flow past oscillating wings may feature dynamic stall and leading edge vortex shedding, and is significantly three-dimensional due to finite-wing effects. Detailed understanding of these phenomena is essential for maximising the power generation efficiency. Most of the knowledge on oscillating wing hydrodynamics is based on two-dimensional low-Reynolds number computational fluid dynamics studies and experimental testing. However, real installations are expected to feature Reynolds numbers of the order of 1 million and strong finite-wing-induced losses. This research investigates the impact of finite wing effects on the hydrodynamics of a realistic aspect ratio 10 oscillating wing device in a stream with Reynolds number of 1.5 million, for two high-energy extraction operating regimes. The benefits of using endplates in order to reduce finite-wing-induced losses are also analyzed. Three-dimensional time-accurate Reynolds-averaged Navier-Stokes simulations using Menter's shear stress transport turbulence model and a 30-million-cell grid are performed. Detailed comparative hydrodynamic analyses of the finite and infinite wings highlight that the power generation efficiency of the finite wing with sharp tips for the considered high energy-extraction regimes decreases by up to 20 %, whereas the maximum power drop is 15 % at most when using the endplates. Horizontal-axis wind turbines may…

Subjects/Keywords: Q Science (General); QA76 Computer software; QC Physics; T Technology (General); TA Engineering (General). Civil engineering (General); TC Hydraulic engineering. Ocean engineering; TL Motor vehicles. Aeronautics. Astronautics; VM Naval architecture. Shipbuilding. Marine engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Drofelnik, J. (2017). Massively parallel time- and frequency-domain Navier-Stokes Computational Fluid Dynamics analysis of wind turbine and oscillating wing unsteady flows. (Doctoral Dissertation). University of Glasgow. Retrieved from http://theses.gla.ac.uk/8284/

Chicago Manual of Style (16th Edition):

Drofelnik, Jernej. “Massively parallel time- and frequency-domain Navier-Stokes Computational Fluid Dynamics analysis of wind turbine and oscillating wing unsteady flows.” 2017. Doctoral Dissertation, University of Glasgow. Accessed August 23, 2017. http://theses.gla.ac.uk/8284/.

MLA Handbook (7th Edition):

Drofelnik, Jernej. “Massively parallel time- and frequency-domain Navier-Stokes Computational Fluid Dynamics analysis of wind turbine and oscillating wing unsteady flows.” 2017. Web. 23 Aug 2017.

Vancouver:

Drofelnik J. Massively parallel time- and frequency-domain Navier-Stokes Computational Fluid Dynamics analysis of wind turbine and oscillating wing unsteady flows. [Internet] [Doctoral dissertation]. University of Glasgow; 2017. [cited 2017 Aug 23]. Available from: http://theses.gla.ac.uk/8284/.

Council of Science Editors:

Drofelnik J. Massively parallel time- and frequency-domain Navier-Stokes Computational Fluid Dynamics analysis of wind turbine and oscillating wing unsteady flows. [Doctoral Dissertation]. University of Glasgow; 2017. Available from: http://theses.gla.ac.uk/8284/

.