Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"oai:elib.suub.uni-bremen.de:DISS/00107715". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Universität Bremen

1. Prada Rojas, Jorge Enrique. Design of a Biosensor for Detection of Bacteria in Water, by means of a Microfluidic System.

Degree: PhD, FB1, 2019, Universität Bremen

In the context of the continuous growth of the worldwide population and the rapid ongoing urbanization around the globe, the need for affordable and effective systems to detect hazardous substances and pathogens in water has gained importance. In order to address this need, multi-disciplinary research efforts from the fields of micro-technology and micro-biology have led to the emergence of microfluidic devices in the form of Lab-on-a-Chip (LoC) and Micro Total Analysis (µTAS) devices, which are capable to host analytical and biorecognition assays, previously restricted to laboratory environments. Traditionally, the development of these devices had benefited from the microelectronics fabrication techniques, and afforded the replication of sub-micrometer channels and structures, as well as the implementation of functional materials to integrate diverse types of sensors (e.g. temperature, pressure, etc) in the same microfluidic device. Nevertheless, the reduction of the fabrication cost has become a persistent goal in order to popularize their utilization. This has urged the application of alternative materials like thermoplastics and large batch production techniques such as injection molding and hot embossing, at the same time to have set new challenges to their reliable and reproducible integration as analytical devices. The present report describes the design, development and testing of a microfluidic device for biosensing of bacteria, by means of RNA hybridization and fluorescence detection. The device consits in a fully Cyclo-Olefin Copolymer (COC) microfluidic chip, in size of 25,5 x 37,75 mm, structured by hot embossing. The microfluidic channels and cavities sum up a fluid volume of about 139 µL, comprising a heating chamber, temperature sensor chambers, cooling channel and reaction chamber. The device layout includes 7 inlets for the sample fluid and diverse reagents plus 1 outlet. On-chip assay starts with the intake of a volume of 1 mL of water sample. The sample fluid is pumped through the heater chamber, where heat from a screen printed heater is applied to lyse the bacteria and release their RNA content to the running flow. Following the same stream, the fluid with released RNA flows across the cooling channel until the reaction chamber. The reaction chamber bottom surface, previously functionalized with capture oligomers complementary to the RNA target sequences, hosts hybridization reactions to capture the target RNA. The captured RNA is later tagged with a fluorescence molecule in a second hybridization. After washing off unbound analytes, the overall fluorescence emission is collected, filtered and quantified. The net fluorescence intensity measurement is then interpreted as an indicator of the concentration of the viable bacteria presented in the sample. The microfluidic chip was tested in a custom testbench that included particle filtering and pre-concentration of bacteria from raw samples, and fluorescence detection system that performed a limit of detection of 18 fmol, with a sensitivity of… Advisors/Committee Members: Lang, Walter (advisor), Lang, Walter (referee), Harms, Carsten (referee).

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prada Rojas, J. E. (2019). Design of a Biosensor for Detection of Bacteria in Water, by means of a Microfluidic System. (Doctoral Dissertation). Universität Bremen. Retrieved from http://elib.suub.uni-bremen.de/edocs/00107715-1.pdf

Chicago Manual of Style (16th Edition):

Prada Rojas, Jorge Enrique. “Design of a Biosensor for Detection of Bacteria in Water, by means of a Microfluidic System.” 2019. Doctoral Dissertation, Universität Bremen. Accessed November 17, 2019. http://elib.suub.uni-bremen.de/edocs/00107715-1.pdf.

MLA Handbook (7th Edition):

Prada Rojas, Jorge Enrique. “Design of a Biosensor for Detection of Bacteria in Water, by means of a Microfluidic System.” 2019. Web. 17 Nov 2019.

Vancouver:

Prada Rojas JE. Design of a Biosensor for Detection of Bacteria in Water, by means of a Microfluidic System. [Internet] [Doctoral dissertation]. Universität Bremen; 2019. [cited 2019 Nov 17]. Available from: http://elib.suub.uni-bremen.de/edocs/00107715-1.pdf.

Council of Science Editors:

Prada Rojas JE. Design of a Biosensor for Detection of Bacteria in Water, by means of a Microfluidic System. [Doctoral Dissertation]. Universität Bremen; 2019. Available from: http://elib.suub.uni-bremen.de/edocs/00107715-1.pdf

.