Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"oai:d-scholarship.pitt.edu:34067". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Pittsburgh

1. Pham, Phuong. Improving and Scaling Mobile Learning via Emotion and Cognitive-state Aware Interfaces.

Degree: 2018, University of Pittsburgh

Massive Open Online Courses (MOOCs) provide high-quality learning materials at low cost to millions of learners. Current MOOC designs, however, have minimal learner-instructor communication channels. This limitation restricts MOOCs from addressing major challenges: low retention rates, frequent distractions, and little personalization in instruction. Previous work enriched learner-instructor communication with physiological signals but was not scalable because of the additional hardware requirement. Large MOOC providers, such as Coursera, have released mobile apps providing more flexibility with “on-the-go” learning environments. This thesis reports an iterative process for the design of mobile intelligent interfaces that can run on unmodified smartphones, implicitly sense multiple modalities from learners, infer learner emotions and cognitive states, and intervene to provide gains in learning. The first part of this research explores the usage of photoplethysmogram (PPG) signals collected implicitly on the back-camera of unmodified smartphones. I explore different deep neural networks, DeepHeart, to improve the accuracy (+2.2%) and robustness of heart rate sensing from noisy PPG signals. The second project, AttentiveLearner, infers mind-wandering events via the collected PPG signals at a performance comparable to systems relying on dedicated physiological sensors (Kappa = 0.22). By leveraging the fine-grained cognitive states, the third project, AttentiveReview, achieves significant (+17.4%) learning gains by providing personalized interventions based on learners’ perceived difficulty. The latter part of this research adds real-time facial analysis from the front camera in addition to the PPG sensing from the back camera. AttentiveLearner2 achieves more robust emotion inference (average accuracy = 84.4%) in mobile MOOC learning. According to a longitudinal study with 28 subjects for three weeks, AttentiveReview2, with the multimodal sensing component, improves learning gain by 28.0% with high usability ratings (average System Usability Scale = 80.5). Finally, I show that technologies in this dissertation not only benefit MOOC learning, but also other emerging areas such as computational advertising and behavior targeting. AttentiveVideo, building on top of the sensing architecture in AttentiveLearner2, quantifies emotional responses to mobile video advertisements. In a 24-participant study, AttentiveVideo achieved good accuracy on a wide range of emotional measures (best accuracy = 82.6% across 9 measures).

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pham, P. (2018). Improving and Scaling Mobile Learning via Emotion and Cognitive-state Aware Interfaces. (Thesis). University of Pittsburgh. Retrieved from http://d-scholarship.pitt.edu/34067/1/phuongpham_etd2018.pdf ; http://d-scholarship.pitt.edu/34067/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pham, Phuong. “Improving and Scaling Mobile Learning via Emotion and Cognitive-state Aware Interfaces.” 2018. Thesis, University of Pittsburgh. Accessed July 20, 2018. http://d-scholarship.pitt.edu/34067/1/phuongpham_etd2018.pdf ; http://d-scholarship.pitt.edu/34067/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pham, Phuong. “Improving and Scaling Mobile Learning via Emotion and Cognitive-state Aware Interfaces.” 2018. Web. 20 Jul 2018.

Vancouver:

Pham P. Improving and Scaling Mobile Learning via Emotion and Cognitive-state Aware Interfaces. [Internet] [Thesis]. University of Pittsburgh; 2018. [cited 2018 Jul 20]. Available from: http://d-scholarship.pitt.edu/34067/1/phuongpham_etd2018.pdf ; http://d-scholarship.pitt.edu/34067/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pham P. Improving and Scaling Mobile Learning via Emotion and Cognitive-state Aware Interfaces. [Thesis]. University of Pittsburgh; 2018. Available from: http://d-scholarship.pitt.edu/34067/1/phuongpham_etd2018.pdf ; http://d-scholarship.pitt.edu/34067/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.