Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"handle:1773/46840". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Washington

1. Yang, Chaoyi. Development of Parallel Indirect Methods for Solving Constrained Optimal Control Problems.

Degree: PhD, 2021, University of Washington

Optimal control is a subject where it is desired to determine the inputs to a dynamical system which optimize a specified performance index while satisfying any constraints on the motion of the system at the same time. Because of the complexity of most applications, optimal control problems (OCPs) are most often solved numerically.The indirect method for solving OCPs is based on solving the firs-order necessary conditions for the optimum and these necessary conditions are written as a two-point boundary value problem. This dissertation presents indirect methods for solving OCPs including control variable inequality constraints (CVICs), state variable inequality constraints (SVICs), and parameters. The necessary conditions of the optimum for the OCPs are written as a boundary value problem with differential algebraic equations which are proved to be index-1 (BVP-DAEs). The complementarity conditions in the BVP associated with those inequality constraints are approximated using Kanzow’s smoothed Fisher-Burmeister formula. Two numerical methods for solving the BVP-DAEs are developed. The multiple shooting technique is one of the techniques applied. Except solving the DAE using a single step linearly implicit Runge-Kutta method, a novel implementation based on MATLAB built-in DAE solver ode15s is provided. The other method used is a collocation method where the DAEs are approximated using Lagrange polynomials within each mesh and required to be satisfied at Lobatto points within each interval. Newton’s method is performed to solve the BVP-DAEs systems for both methods and the descent direction is found by solving a sparse bordered almost block diagonal (BABD) linear system with a structured orthogonal factorization algorithm. For the MATLAB implementation, the efficiency of the embedded parallel computing toolbox is explored. Moreover, using the graphics processing unit (GPU) to accelerate the numerical algorithm solving process is very promising by using faster hardware. Combining those, this dissertation also presents the GPU based parallel implementation for both numerical methods, which is implemented using Python and CUDA. Numerical examples are presented to illustrate the efficiency of the implementation. The GPU based parallel implementations are shown to be significantly faster than the implementation using Central Processing Unit (CPU) alone or implemented using MATLAB for both methods. Extending the collocation method presented, a study so called the collocation method with ph adaptive mesh refinement is introduced to further improve the efficient and the robustness of the collocation method presented. First, a novel method to estimate the error of the solution from collocation method is presented which serves as a basis of the ph adaptive mesh refinement method. In the original collocation method, the problem is solved based on a global unified number of collocation points used within each mesh interval without the dynamic mesh of the problem. In the ph adaptive method, not only the mesh varies during the… Advisors/Committee Members: Fabien, Brian C (advisor).

Subjects/Keywords: adaptive mesh refinement; boundary value problem; CUDA; differential algebraic equation; indirect method; optimal control; Mechanical engineering; Applied mathematics; Mechanical engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, C. (2021). Development of Parallel Indirect Methods for Solving Constrained Optimal Control Problems. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/46840

Chicago Manual of Style (16th Edition):

Yang, Chaoyi. “Development of Parallel Indirect Methods for Solving Constrained Optimal Control Problems.” 2021. Doctoral Dissertation, University of Washington. Accessed April 22, 2021. http://hdl.handle.net/1773/46840.

MLA Handbook (7th Edition):

Yang, Chaoyi. “Development of Parallel Indirect Methods for Solving Constrained Optimal Control Problems.” 2021. Web. 22 Apr 2021.

Vancouver:

Yang C. Development of Parallel Indirect Methods for Solving Constrained Optimal Control Problems. [Internet] [Doctoral dissertation]. University of Washington; 2021. [cited 2021 Apr 22]. Available from: http://hdl.handle.net/1773/46840.

Council of Science Editors:

Yang C. Development of Parallel Indirect Methods for Solving Constrained Optimal Control Problems. [Doctoral Dissertation]. University of Washington; 2021. Available from: http://hdl.handle.net/1773/46840

.