Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"handle:1773/43307". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Washington

1. Lowe, Alexander Trent. Local ecosystem processes modulate ocean acidification and its effect on benthic foundation species.

Degree: PhD, 2019, University of Washington

Ocean acidification poses serious threats to coastal ecosystem services, yet few empirical studies have investigated how feedbacks from local ecological processes may modulate global trends of pH from rising atmospheric CO2. Just as microclimatic influences cause departures from long-term warming trends in temperature, local processes may decouple local marine environments from the increased anthropogenic CO2 that dissolves in seawater and reduces pH. Seawater pH has been shown to be an important factor regulating physiological processes of many aquatic organisms, including valuable aquaculture species like Pacific oysters. Understanding 1) whether long-term ocean acidification varies spatially due to local ecological processes, 2) which environmental factors or ecological processes drive variation in seawater pH, and 3) the effects of this pH variation on marine organisms are critical research needs for climate change adaptation and management of important marine resources. In this dissertation, I found that pH exhibits high variability across spatial and temporal scales in the Salish Sea, exhibiting location-specific long-term changes driven by differences in net ecosystem metabolism (Chapter 1). By mapping pH in important shellfish aquaculture regions of Washington state, I showed that shallow-water environments over tidal flats are more variable in pH than surface waters over deeper channels, associated with bentho-pelagic coupling of organic matter production and decomposition, in addition to characteristic physical changes of temperature and salinity up-estuary (Chapter 2). Using interactions with an autotrophic foundation species (eelgrass Zostera marina) along estuarine gradients, I found that growth of two species of oyster were most strongly positively correlated to differences in stable isotope and fatty acid biomarkers of food availability both from river to ocean along the estuarine gradient and in association with eelgrass (Chapter 3). Shell strength, a putative indicator of pH stress, showed a positive response to eelgrass for the native, but negative response for the non-native oyster. Small differences in growth and shell strength were observed in association with eelgrass, but mortality related to predation was much higher in eelgrass. Collectively, these results support the adoption of an ecosystem perspective to ocean acidification as well as other stressors in productive aquatic habitats. Chapter 1: Patterns of pH variability were quantified as a function of atmospheric CO2 and local physical and biological processes at 83 sites over 25 years in the Salish Sea and two NE Pacific estuaries. Mean seawater pH decreased significantly at -0.009 ± 0.0005 pH yr-1 (0.22 pH over 25 years), with spatially variable rates ranging up to 10 times greater than atmospheric CO2-driven ocean acidification. Dissolved oxygen saturation (%DO) decreased by -0.24 ± 0.036% yr-1, with site-specific trends similar to pH. Mean pH shifted from <7.6 in winter to >8.0 in summer concomitant with the seasonal shift from… Advisors/Committee Members: Ruesink, Jennifer (advisor).

Subjects/Keywords: ecosystem metabolism; foundation species; ocean acidification; oysters; Ecology; Biology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lowe, A. T. (2019). Local ecosystem processes modulate ocean acidification and its effect on benthic foundation species. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/43307

Chicago Manual of Style (16th Edition):

Lowe, Alexander Trent. “Local ecosystem processes modulate ocean acidification and its effect on benthic foundation species.” 2019. Doctoral Dissertation, University of Washington. Accessed March 20, 2019. http://hdl.handle.net/1773/43307.

MLA Handbook (7th Edition):

Lowe, Alexander Trent. “Local ecosystem processes modulate ocean acidification and its effect on benthic foundation species.” 2019. Web. 20 Mar 2019.

Vancouver:

Lowe AT. Local ecosystem processes modulate ocean acidification and its effect on benthic foundation species. [Internet] [Doctoral dissertation]. University of Washington; 2019. [cited 2019 Mar 20]. Available from: http://hdl.handle.net/1773/43307.

Council of Science Editors:

Lowe AT. Local ecosystem processes modulate ocean acidification and its effect on benthic foundation species. [Doctoral Dissertation]. University of Washington; 2019. Available from: http://hdl.handle.net/1773/43307

.