Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"handle:1773/40477". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Washington

1. Menchaca, Maximo. The Influence of an Orographic Feature on an Idealized Mid-Latitude Cyclone.

Degree: PhD, 2017, University of Washington

The interaction of a mid-latitude cyclone with an isolated north-south mountain barrier is examined using idealized numerical simulation. A prototypical cyclone develops from an isolated disturbance in a baroclinically unstable shear flow upstream of the ridge, producing a cold front that interacts strongly with the topography. The structure and evolution of the lee waves launched by the topography are analyzed, including their temporal and their north-south variation along the ridge. Typical mountain wave patterns are generated by a 500-m high mountain, while substantial wave breaking occurs above a mountain with 2-km height, both at low levels in the lee and in the lower stratosphere. Both local wave characteristics (like their structure and magnitude) and integrated effects of these waves (the pressure drag and momentum flux) often exhibit significant differences from the waves produced in 2D or 3D simulations with steady large-scale flow structures corresponding to the instantaneous conditions over the mountain in the evolving flow. Stratospheric wave breaking over a sufficiently high ridge causes significant removal of the cross-mountain momentum, and strong regions of deceleration are observed above the jet core. Low-level blocking and displacement of the developing cyclone are other ways the mountain influences the synoptic system. Small-amplitude perturbations strongly influence the domain-averaged flow response to the terrain. The mountain waves are also observed to have an influence on the atmospheric KE spectra, producing a k-5/3 spectra over a wide range of mesoscale wavenumbers in the stratosphere; this slope is not present in the absence of terrain. The spectral energy budget is calculated, and the gravity waves directly inject energy into the mesoscale, which is then cascaded upscale. These results suggest that terrain forcing is sufficient for building a k-5/3 slope, and that direct forcing of the mesoscale is necessary for production of the observed mesoscale slopes, invalidating inertial cascade assumptions. Advisors/Committee Members: Durran, Dale R. (advisor).

Subjects/Keywords: Blocking; Downslope Winds; KE Spectra; Mid-Latitude Cyclone; Mountain Waves; Wave Breaking; Atmospheric sciences; Atmospheric sciences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Menchaca, M. (2017). The Influence of an Orographic Feature on an Idealized Mid-Latitude Cyclone. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/40477

Chicago Manual of Style (16th Edition):

Menchaca, Maximo. “The Influence of an Orographic Feature on an Idealized Mid-Latitude Cyclone.” 2017. Doctoral Dissertation, University of Washington. Accessed November 17, 2017. http://hdl.handle.net/1773/40477.

MLA Handbook (7th Edition):

Menchaca, Maximo. “The Influence of an Orographic Feature on an Idealized Mid-Latitude Cyclone.” 2017. Web. 17 Nov 2017.

Vancouver:

Menchaca M. The Influence of an Orographic Feature on an Idealized Mid-Latitude Cyclone. [Internet] [Doctoral dissertation]. University of Washington; 2017. [cited 2017 Nov 17]. Available from: http://hdl.handle.net/1773/40477.

Council of Science Editors:

Menchaca M. The Influence of an Orographic Feature on an Idealized Mid-Latitude Cyclone. [Doctoral Dissertation]. University of Washington; 2017. Available from: http://hdl.handle.net/1773/40477

.