Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for id:"handle:11124/173273". One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Colorado School of Mines

1. Kale, Abhijit S. PASSIVATED CONTACTS FOR HIGH EFFICIENCY MONOCRYSTALLINE SILICON SOLAR CELLS.

Degree: PhD, Chemical and Biological Engineering, 2019, Colorado School of Mines

Global energy demands have been increasing and the ability of fossil fuels to meet these demands is limited. Due to the associated climate change concerns, most of the current new energy installations have been based on renewable energy resources such as wind and solar. However, to further develop solar energy as a renewable energy resource, improvements in silicon-based solar cells, which represent more than 90% of the current photovoltaics market, is critical. In this thesis work we explore strategies for more efficient and cheaper solar cells. Efficiency improvements are enabled via passivated contacts, which serve both as a contact layer and a passivation layer for the crystalline silicon (c-Si) surface, and are a potential candidate for next-generation industrial c Si solar cells. In this thesis work, we identify a few salient features of passivated contacts comprising of a polycrystalline Si (poly-Si) deposited on top of ultrathin, 1.5–2.2 nm thick SiOx layers forming a metal/poly-Si/SiOx/c-Si contact stack. Poly-Si/SiOx contact passivation and conduction depends on both the SiOx thickness and contact annealing temperature. Depending on the processing conditions, two different scenarios for conduction through the SiOx layer are observed: uniform tunneling conduction or locally enhanced conduction. The locally enhanced conduction occurs through 10s of nanometer size regions with either no SiOx layer, or a thinned-down tunneling SiOx layer. The performance of the poly-Si/SiOx contacts on a pyramidal textured Si surface, which is critical for light-trapping, is also studied. The poorer passivation on a textured surface is related to the surface morphology: both the pyramidal morphology and nanoscale roughness over the pyramidal shape, causing SiOx related nonuniformities. Both the pyramidal morphology and nanoscale roughness can be modified using wet-chemical etching via HF:HNO3 solution. Such a morphological change improves surface passivation, but deteriorates the light trapping properties of the Si surface. We also explored strategies to replace current solar cell metallization processes based on the expensive Ag metal with a cheaper Cu metal, which necessitates a conductive Cu diffusion barrier interlayer between Cu and Si. The superior Cu diffusion barrier properties and thermal stability of a Cu/NiSi/Si stack over a Cu/Ni/Si stack is demonstrated. Advisors/Committee Members: Agarwal, Sumit (advisor), Stradins, Paul (advisor), Wu, Ning (committee member), Carreon, Moises (committee member), Pylypenko, Svitlana (committee member).

Subjects/Keywords: passivated contact; silicon oxide; tunneling; passivation; electron beam induced current; silicon solar cell

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kale, A. S. (2019). PASSIVATED CONTACTS FOR HIGH EFFICIENCY MONOCRYSTALLINE SILICON SOLAR CELLS. (Doctoral Dissertation). Colorado School of Mines. Retrieved from http://hdl.handle.net/11124/173273

Chicago Manual of Style (16th Edition):

Kale, Abhijit S. “PASSIVATED CONTACTS FOR HIGH EFFICIENCY MONOCRYSTALLINE SILICON SOLAR CELLS.” 2019. Doctoral Dissertation, Colorado School of Mines. Accessed October 19, 2019. http://hdl.handle.net/11124/173273.

MLA Handbook (7th Edition):

Kale, Abhijit S. “PASSIVATED CONTACTS FOR HIGH EFFICIENCY MONOCRYSTALLINE SILICON SOLAR CELLS.” 2019. Web. 19 Oct 2019.

Vancouver:

Kale AS. PASSIVATED CONTACTS FOR HIGH EFFICIENCY MONOCRYSTALLINE SILICON SOLAR CELLS. [Internet] [Doctoral dissertation]. Colorado School of Mines; 2019. [cited 2019 Oct 19]. Available from: http://hdl.handle.net/11124/173273.

Council of Science Editors:

Kale AS. PASSIVATED CONTACTS FOR HIGH EFFICIENCY MONOCRYSTALLINE SILICON SOLAR CELLS. [Doctoral Dissertation]. Colorado School of Mines; 2019. Available from: http://hdl.handle.net/11124/173273

.