Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Vanderbilt University" +contributor:("Melissa S. Gresalfi"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Vanderbilt University

1. Martinez Garza, Mario Manuel. Coevolution of Theory and Data Analytics of Digital Game-Based Learning.

Degree: PhD, Learning, Teaching and Diversity, 2016, Vanderbilt University

Learning theory and educational data analytics can be said to coevolve, that is, to refine and improve each other reciprocally, each aspect providing a necessary element for the growth and advancement of the other. In this three-paper dissertation, I explore this process of coevolution between learning theory and data analytics in the context of digital game-based learning. From the theoretical side, I describe a framework based on a general theory of cognition (the two-system or dual-system model) that can be applied to digital game environments. The main hypothesis in this framework is that certain patterns of action in the game-space indicate the use of certain epistemic stances that have analogues within the two-system model. The proposed Two Stance/Two Model Framework (2SM) provides (a) improved explanatory power regarding intrapersonal variation in learning from games, (b) more complete theory regarding individual needs, goals, and agency, (c) a more extensive account of collaboration and community, and (d) improved perspective on knowledge-rich interactions in online affinity spaces. From the methodological side, I applied techniques of statistical computing (affinity clustering and sequence mining) to detect the stances of the 2SM as they appear in a physics learning game. The 2SM theorized that slow modes of solution would correlate to higher learning gains; students who use mainly fast iterative solution strategies did achieve lower learning gains than students who preferred slow, elaborated solutions. A second finding was that, as play progresses, students generally improve their performance in game areas that highlight physics concepts, but that this improvement is strongly moderated by their prior knowledge of physics. This dissertation further contributes to the existing knowledge of digital game-based learning by demonstrating how an analysis of the collected actions of players can be applied in a reliable and comprehensive fashion to research questions that are otherwise challenging to investigate. Advisors/Committee Members: Rogers P. Hall (committee member), Daniel T. Levin (committee member), Melissa S. Gresalfi (committee member), Douglas B. Clark (Committee Chair).

Subjects/Keywords: data mining; learning analytics; educational games; science learning

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martinez Garza, M. M. (2016). Coevolution of Theory and Data Analytics of Digital Game-Based Learning. (Doctoral Dissertation). Vanderbilt University. Retrieved from http://hdl.handle.net/1803/10476

Chicago Manual of Style (16th Edition):

Martinez Garza, Mario Manuel. “Coevolution of Theory and Data Analytics of Digital Game-Based Learning.” 2016. Doctoral Dissertation, Vanderbilt University. Accessed January 15, 2021. http://hdl.handle.net/1803/10476.

MLA Handbook (7th Edition):

Martinez Garza, Mario Manuel. “Coevolution of Theory and Data Analytics of Digital Game-Based Learning.” 2016. Web. 15 Jan 2021.

Vancouver:

Martinez Garza MM. Coevolution of Theory and Data Analytics of Digital Game-Based Learning. [Internet] [Doctoral dissertation]. Vanderbilt University; 2016. [cited 2021 Jan 15]. Available from: http://hdl.handle.net/1803/10476.

Council of Science Editors:

Martinez Garza MM. Coevolution of Theory and Data Analytics of Digital Game-Based Learning. [Doctoral Dissertation]. Vanderbilt University; 2016. Available from: http://hdl.handle.net/1803/10476

.