Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Vanderbilt University" +contributor:("Andre Zavalin"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Vanderbilt University

1. Jayasinghe, Aroshan Kaushalya. Biomechanics of dorsal closure studied using holographic laser microsurgery.

Degree: PhD, Physics, 2012, Vanderbilt University

Dorsal closure is an important morphogenetic event in the embryogenesis of Drosophila melanogaster and serves as a useful model system for studying wound healing, palatogenesis, and neural tube closure in vertebrates. During this stage of development, cells in the amnioserosa â a tissue that fills a gap left in the epithelium of the embryo as a result of germband retraction â undergo periodic contractions in their apical surfaces. These contractions play an important part in reshaping the amnioserosa tissue. To study the physical forces driving this apical constriction cycle, I built a multi-point (holographic) laser microsurgical system. This system utilizes a spatial light modulator to diffract a single 5-ns pulse from a UV laser, creating a user-defined pattern in the focal plane of a confocal fluorescent microscope. This system was then used to investigate cell-autonomous behavior in amnioserosa cells in vivo. A model of the tissue was constructed to simulate the behavior seen in the cell-isolation experiments. To verify the model, further experiments were performed on embryos anesthetized using CO2 and Argon gases, both of which pause the apical contraction cycle. The experiments and model suggest that internally generated contractile forces are largely responsible for the behavior seen in individual cells of the amnioserosa tissue. Passive elastic strain plays a much smaller role. To investigate possible secondary effects of multi-point ablation, we studied the dynamics of laser-induced cavitation bubbles using a bright-field, high-speed imaging system. The cavitation bubbles formed in embryos are much larger than the laser-disrupted region of tissue, raising the possibility that these bubbles are expanding in the uncompartmentalized space between the tissue and the surrounding vitelline membrane. Furthermore, shockwaves radiating from certain, highly-symmetric patterns of ablation sites can both cause secondary cavitation in un-ablated material, and enhance the growth of existing cavitation bubbles. Therefore, the possibility of such interactions should be accounted for when simultaneously ablating multiple closely-spaced sites. Advisors/Committee Members: E Duco Jansen (committee member), Kalman Varga (committee member), Andre Zavalin (committee member), M Shane Hutson (chair), Richard F Haglund, Jr (committee member).

Subjects/Keywords: laser tissue interaction; cavitation bubbles; laser microsurgery; holographic ablation; dorsal closure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jayasinghe, A. K. (2012). Biomechanics of dorsal closure studied using holographic laser microsurgery. (Doctoral Dissertation). Vanderbilt University. Retrieved from http://etd.library.vanderbilt.edu//available/etd-12062012-141013/ ;

Chicago Manual of Style (16th Edition):

Jayasinghe, Aroshan Kaushalya. “Biomechanics of dorsal closure studied using holographic laser microsurgery.” 2012. Doctoral Dissertation, Vanderbilt University. Accessed August 20, 2019. http://etd.library.vanderbilt.edu//available/etd-12062012-141013/ ;.

MLA Handbook (7th Edition):

Jayasinghe, Aroshan Kaushalya. “Biomechanics of dorsal closure studied using holographic laser microsurgery.” 2012. Web. 20 Aug 2019.

Vancouver:

Jayasinghe AK. Biomechanics of dorsal closure studied using holographic laser microsurgery. [Internet] [Doctoral dissertation]. Vanderbilt University; 2012. [cited 2019 Aug 20]. Available from: http://etd.library.vanderbilt.edu//available/etd-12062012-141013/ ;.

Council of Science Editors:

Jayasinghe AK. Biomechanics of dorsal closure studied using holographic laser microsurgery. [Doctoral Dissertation]. Vanderbilt University; 2012. Available from: http://etd.library.vanderbilt.edu//available/etd-12062012-141013/ ;

.