Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Toronto" +contributor:("Bar-Natan, Dror"). Showing records 1 – 9 of 9 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Lee, Peter. The Pure Virtual Braid Group is Quadratic.

Degree: 2012, University of Toronto

If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra grK need not in general… (more)

Subjects/Keywords: Pure Virtual Braids; Quadraticity; Graded 1-Formal; Universal Finite Type Invariant; 0405

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, P. (2012). The Pure Virtual Braid Group is Quadratic. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/32806

Chicago Manual of Style (16th Edition):

Lee, Peter. “The Pure Virtual Braid Group is Quadratic.” 2012. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/32806.

MLA Handbook (7th Edition):

Lee, Peter. “The Pure Virtual Braid Group is Quadratic.” 2012. Web. 06 Aug 2020.

Vancouver:

Lee P. The Pure Virtual Braid Group is Quadratic. [Internet] [Doctoral dissertation]. University of Toronto; 2012. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/32806.

Council of Science Editors:

Lee P. The Pure Virtual Braid Group is Quadratic. [Doctoral Dissertation]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/32806

2. Chu, Karene Kayin. Flat Virtual Pure Tangles.

Degree: 2012, University of Toronto

Virtual knot theory, introduced by Kauffman, is a generalization of classical knot theory of interest because its finite-type invariant theory is potentially a topological interpretation… (more)

Subjects/Keywords: virtual knot; flat virtual knot; finite-type invariants; R-matrix; quantum invariant; immersed curves; 0405

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chu, K. K. (2012). Flat Virtual Pure Tangles. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/33962

Chicago Manual of Style (16th Edition):

Chu, Karene Kayin. “Flat Virtual Pure Tangles.” 2012. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/33962.

MLA Handbook (7th Edition):

Chu, Karene Kayin. “Flat Virtual Pure Tangles.” 2012. Web. 06 Aug 2020.

Vancouver:

Chu KK. Flat Virtual Pure Tangles. [Internet] [Doctoral dissertation]. University of Toronto; 2012. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/33962.

Council of Science Editors:

Chu KK. Flat Virtual Pure Tangles. [Doctoral Dissertation]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/33962

3. Leung, Louis. Classical Lie Algebra Weight Systems of Arrow Diagrams.

Degree: 2010, University of Toronto

The notion of finite type invariants of virtual knots, introduced by Goussarov, Polyak and Viro, leads to the study of the space of diagrams with… (more)

Subjects/Keywords: knot theory; virtual knots; weight systems; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leung, L. (2010). Classical Lie Algebra Weight Systems of Arrow Diagrams. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/26366

Chicago Manual of Style (16th Edition):

Leung, Louis. “Classical Lie Algebra Weight Systems of Arrow Diagrams.” 2010. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/26366.

MLA Handbook (7th Edition):

Leung, Louis. “Classical Lie Algebra Weight Systems of Arrow Diagrams.” 2010. Web. 06 Aug 2020.

Vancouver:

Leung L. Classical Lie Algebra Weight Systems of Arrow Diagrams. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/26366.

Council of Science Editors:

Leung L. Classical Lie Algebra Weight Systems of Arrow Diagrams. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/26366

4. Archibald, Jana. The Multivariable Alexander Polynomial on Tangles.

Degree: 2010, University of Toronto

The multivariable Alexander polynomial (MVA) is a classical invariant of knots and links. We give an extension to regular virtual knots which has simple versions… (more)

Subjects/Keywords: Knot Theory; Multivariable Alexander Polynomial; 0405

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Archibald, J. (2010). The Multivariable Alexander Polynomial on Tangles. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/26151

Chicago Manual of Style (16th Edition):

Archibald, Jana. “The Multivariable Alexander Polynomial on Tangles.” 2010. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/26151.

MLA Handbook (7th Edition):

Archibald, Jana. “The Multivariable Alexander Polynomial on Tangles.” 2010. Web. 06 Aug 2020.

Vancouver:

Archibald J. The Multivariable Alexander Polynomial on Tangles. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/26151.

Council of Science Editors:

Archibald J. The Multivariable Alexander Polynomial on Tangles. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/26151


University of Toronto

5. Ens, Travis. On Braidors: An Analogue of the Theory of Drinfel'd Associators for Braids in an Annulus.

Degree: PhD, 2020, University of Toronto

 We develop the theory of braidors, an analogue of Drinfel’d’s theory of associators in which braids in an annulus are considered rather than braids in… (more)

Subjects/Keywords: Annulus; Associator; Braid; Braidor; Grothendiech-Teichmüller; Quantum Algebra; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ens, T. (2020). On Braidors: An Analogue of the Theory of Drinfel'd Associators for Braids in an Annulus. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/100967

Chicago Manual of Style (16th Edition):

Ens, Travis. “On Braidors: An Analogue of the Theory of Drinfel'd Associators for Braids in an Annulus.” 2020. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/100967.

MLA Handbook (7th Edition):

Ens, Travis. “On Braidors: An Analogue of the Theory of Drinfel'd Associators for Braids in an Annulus.” 2020. Web. 06 Aug 2020.

Vancouver:

Ens T. On Braidors: An Analogue of the Theory of Drinfel'd Associators for Braids in an Annulus. [Internet] [Doctoral dissertation]. University of Toronto; 2020. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/100967.

Council of Science Editors:

Ens T. On Braidors: An Analogue of the Theory of Drinfel'd Associators for Braids in an Annulus. [Doctoral Dissertation]. University of Toronto; 2020. Available from: http://hdl.handle.net/1807/100967


University of Toronto

6. Vo, Huan T. Alexander Invariants of Tangles via Expansions.

Degree: PhD, 2018, University of Toronto

 This thesis consists of two parts. In the main part of the thesis we introduce an extension of the Alexander polynomial to tangles, known as… (more)

Subjects/Keywords: Alexander Polynomials; Fox Milnor; Gamma Calculus; Knots; Ribbon; Tangles; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vo, H. T. (2018). Alexander Invariants of Tangles via Expansions. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/92037

Chicago Manual of Style (16th Edition):

Vo, Huan T. “Alexander Invariants of Tangles via Expansions.” 2018. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/92037.

MLA Handbook (7th Edition):

Vo, Huan T. “Alexander Invariants of Tangles via Expansions.” 2018. Web. 06 Aug 2020.

Vancouver:

Vo HT. Alexander Invariants of Tangles via Expansions. [Internet] [Doctoral dissertation]. University of Toronto; 2018. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/92037.

Council of Science Editors:

Vo HT. Alexander Invariants of Tangles via Expansions. [Doctoral Dissertation]. University of Toronto; 2018. Available from: http://hdl.handle.net/1807/92037


University of Toronto

7. Dancso, Zsuzsanna. On a Universal Finite Type Invariant of Knotted Trivalent Graphs.

Degree: 2011, University of Toronto

Knot theory is not generally considered an algebraic subject, due to the fact that knots don’t have much algebraic structure: there are a few operations… (more)

Subjects/Keywords: finite type invariants; knotted trivalent graphs; Kotsevich integral; Drinfeld associator; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dancso, Z. (2011). On a Universal Finite Type Invariant of Knotted Trivalent Graphs. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/31731

Chicago Manual of Style (16th Edition):

Dancso, Zsuzsanna. “On a Universal Finite Type Invariant of Knotted Trivalent Graphs.” 2011. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/31731.

MLA Handbook (7th Edition):

Dancso, Zsuzsanna. “On a Universal Finite Type Invariant of Knotted Trivalent Graphs.” 2011. Web. 06 Aug 2020.

Vancouver:

Dancso Z. On a Universal Finite Type Invariant of Knotted Trivalent Graphs. [Internet] [Doctoral dissertation]. University of Toronto; 2011. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/31731.

Council of Science Editors:

Dancso Z. On a Universal Finite Type Invariant of Knotted Trivalent Graphs. [Doctoral Dissertation]. University of Toronto; 2011. Available from: http://hdl.handle.net/1807/31731


University of Toronto

8. Chterental, Oleg. Virtual Braids and Virtual Curve Diagrams.

Degree: PhD, 2015, University of Toronto

 There is a well-known injective homomorphism from the n-strand braid group Bn into Aut(Fn), the automorphism group of a free group on n symbols, first… (more)

Subjects/Keywords: curve diagrams; virtual braids; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chterental, O. (2015). Virtual Braids and Virtual Curve Diagrams. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/70904

Chicago Manual of Style (16th Edition):

Chterental, Oleg. “Virtual Braids and Virtual Curve Diagrams.” 2015. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/70904.

MLA Handbook (7th Edition):

Chterental, Oleg. “Virtual Braids and Virtual Curve Diagrams.” 2015. Web. 06 Aug 2020.

Vancouver:

Chterental O. Virtual Braids and Virtual Curve Diagrams. [Internet] [Doctoral dissertation]. University of Toronto; 2015. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/70904.

Council of Science Editors:

Chterental O. Virtual Braids and Virtual Curve Diagrams. [Doctoral Dissertation]. University of Toronto; 2015. Available from: http://hdl.handle.net/1807/70904


University of Toronto

9. Halacheva, Iva. Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group.

Degree: PhD, 2016, University of Toronto

 This thesis consists of two parts, the first part is in the setting of algebraic knot theory while the second studies ideas in representation theory.… (more)

Subjects/Keywords: Knot theory; Representation theory; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Halacheva, I. (2016). Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/76486

Chicago Manual of Style (16th Edition):

Halacheva, Iva. “Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group.” 2016. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/76486.

MLA Handbook (7th Edition):

Halacheva, Iva. “Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group.” 2016. Web. 06 Aug 2020.

Vancouver:

Halacheva I. Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group. [Internet] [Doctoral dissertation]. University of Toronto; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/76486.

Council of Science Editors:

Halacheva I. Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group. [Doctoral Dissertation]. University of Toronto; 2016. Available from: http://hdl.handle.net/1807/76486

.