Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Texas – Austin" +contributor:("Wallace, Byron C"). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Texas – Austin

1. -7115-3202. Sarcasm detection on Twitter.

Degree: Information, 2016, University of Texas – Austin

 State-of-the-art approaches for sarcasm detection in social media combine lexical clues with contextual information surrounding the potentially sarcastic posting including author information. This article presents… (more)

Subjects/Keywords: Sarcasm; Twitter; Machine learning

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-7115-3202. (2016). Sarcasm detection on Twitter. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/43728

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

-7115-3202. “Sarcasm detection on Twitter.” 2016. Thesis, University of Texas – Austin. Accessed April 22, 2019. http://hdl.handle.net/2152/43728.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

-7115-3202. “Sarcasm detection on Twitter.” 2016. Web. 22 Apr 2019.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-7115-3202. Sarcasm detection on Twitter. [Internet] [Thesis]. University of Texas – Austin; 2016. [cited 2019 Apr 22]. Available from: http://hdl.handle.net/2152/43728.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

-7115-3202. Sarcasm detection on Twitter. [Thesis]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/43728

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

2. -2916-0908. PM2.5 study : explore PM2.5 in Beijing using data mining methods and social media data.

Degree: Information, 2016, University of Texas – Austin

 Air pollution is one of the worst outcomes from industrialization. Among other air pollutants, PM2.5 is believed to pose the greatest risks to human health… (more)

Subjects/Keywords: Data mining; Weibo

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-2916-0908. (2016). PM2.5 study : explore PM2.5 in Beijing using data mining methods and social media data. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/45792

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

-2916-0908. “PM2.5 study : explore PM2.5 in Beijing using data mining methods and social media data.” 2016. Thesis, University of Texas – Austin. Accessed April 22, 2019. http://hdl.handle.net/2152/45792.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

-2916-0908. “PM2.5 study : explore PM2.5 in Beijing using data mining methods and social media data.” 2016. Web. 22 Apr 2019.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-2916-0908. PM2.5 study : explore PM2.5 in Beijing using data mining methods and social media data. [Internet] [Thesis]. University of Texas – Austin; 2016. [cited 2019 Apr 22]. Available from: http://hdl.handle.net/2152/45792.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

-2916-0908. PM2.5 study : explore PM2.5 in Beijing using data mining methods and social media data. [Thesis]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/45792

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

3. -5892-1089. Temporal modeling of crowd work quality for quality assurance in crowdsourcing.

Degree: Information, 2015, University of Texas – Austin

 While crowdsourcing offers potential traction on data collection at scale, it also poses new and significant quality concerns. Beyond the obvious issue of any new… (more)

Subjects/Keywords: Crowdsourcing; Quality assurance; Time-series; Prediction; Measurement

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-5892-1089. (2015). Temporal modeling of crowd work quality for quality assurance in crowdsourcing. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/33261

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

-5892-1089. “Temporal modeling of crowd work quality for quality assurance in crowdsourcing.” 2015. Thesis, University of Texas – Austin. Accessed April 22, 2019. http://hdl.handle.net/2152/33261.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

-5892-1089. “Temporal modeling of crowd work quality for quality assurance in crowdsourcing.” 2015. Web. 22 Apr 2019.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-5892-1089. Temporal modeling of crowd work quality for quality assurance in crowdsourcing. [Internet] [Thesis]. University of Texas – Austin; 2015. [cited 2019 Apr 22]. Available from: http://hdl.handle.net/2152/33261.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

-5892-1089. Temporal modeling of crowd work quality for quality assurance in crowdsourcing. [Thesis]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/33261

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

4. -4493-3358. Appropriate, accessible and appealing probabilistic graphical models.

Degree: Computer Sciences, 2017, University of Texas – Austin

 Appropriate - Many multivariate probabilistic models either use independent distributions or dependent Gaussian distributions. Yet, many real-world datasets contain count-valued or non-negative skewed data, e.g.… (more)

Subjects/Keywords: Graphical models; Topic models; Poisson; Count data; Visualization; Human computer interaction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4493-3358. (2017). Appropriate, accessible and appealing probabilistic graphical models. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/62986

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

-4493-3358. “Appropriate, accessible and appealing probabilistic graphical models.” 2017. Thesis, University of Texas – Austin. Accessed April 22, 2019. http://hdl.handle.net/2152/62986.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

-4493-3358. “Appropriate, accessible and appealing probabilistic graphical models.” 2017. Web. 22 Apr 2019.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4493-3358. Appropriate, accessible and appealing probabilistic graphical models. [Internet] [Thesis]. University of Texas – Austin; 2017. [cited 2019 Apr 22]. Available from: http://hdl.handle.net/2152/62986.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

-4493-3358. Appropriate, accessible and appealing probabilistic graphical models. [Thesis]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/62986

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

.