Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Texas – Austin" +contributor:("Mahajan, Swadesh M."). Showing records 1 – 11 of 11 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Texas – Austin

1. Covele, Brent Michael. 2-D magnetic equilibrium and transport modeling of the X-divertor and super X-divertor for scrape-off layer heat flux mitigation in tokamaks.

Degree: PhD, Physics, 2014, University of Texas – Austin

 Intense heat fluxes from the divertor incident on material surfaces represent a “bottleneck” problem for the next generation of tokamaks. Advanced divertors, such as the… (more)

Subjects/Keywords: Divertor; Advanced divertor; X-divertor; Super X-divertor; Detachment; Tokamak; Scrape-off layer; CORSICA; SOLPS

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Covele, B. M. (2014). 2-D magnetic equilibrium and transport modeling of the X-divertor and super X-divertor for scrape-off layer heat flux mitigation in tokamaks. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/27156

Chicago Manual of Style (16th Edition):

Covele, Brent Michael. “2-D magnetic equilibrium and transport modeling of the X-divertor and super X-divertor for scrape-off layer heat flux mitigation in tokamaks.” 2014. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/27156.

MLA Handbook (7th Edition):

Covele, Brent Michael. “2-D magnetic equilibrium and transport modeling of the X-divertor and super X-divertor for scrape-off layer heat flux mitigation in tokamaks.” 2014. Web. 11 Apr 2021.

Vancouver:

Covele BM. 2-D magnetic equilibrium and transport modeling of the X-divertor and super X-divertor for scrape-off layer heat flux mitigation in tokamaks. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2014. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/27156.

Council of Science Editors:

Covele BM. 2-D magnetic equilibrium and transport modeling of the X-divertor and super X-divertor for scrape-off layer heat flux mitigation in tokamaks. [Doctoral Dissertation]. University of Texas – Austin; 2014. Available from: http://hdl.handle.net/2152/27156


University of Texas – Austin

2. Liu, Xing, (Ph. D. in physics). Gyrokinetic simulation of pedestal turbulence using GENE.

Degree: PhD, Physics, 2018, University of Texas – Austin

 We present here a study based on gyrokinetic simulations (using GENE) to model turbulence in the pedestals on several well-diagnosed shots: two H-modes on DIII-D… (more)

Subjects/Keywords: Gyrokinetic; Simulation; Transport; Tokamak; Fusion; Plasma

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, Xing, (. D. i. p. (2018). Gyrokinetic simulation of pedestal turbulence using GENE. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/69104

Chicago Manual of Style (16th Edition):

Liu, Xing, (Ph D in physics). “Gyrokinetic simulation of pedestal turbulence using GENE.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/69104.

MLA Handbook (7th Edition):

Liu, Xing, (Ph D in physics). “Gyrokinetic simulation of pedestal turbulence using GENE.” 2018. Web. 11 Apr 2021.

Vancouver:

Liu, Xing (Dip. Gyrokinetic simulation of pedestal turbulence using GENE. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/69104.

Council of Science Editors:

Liu, Xing (Dip. Gyrokinetic simulation of pedestal turbulence using GENE. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/69104

3. Bhattacharjee, Chinmoy. Magnetofluid dynamics in curved spacetime : theory and application.

Degree: PhD, Physics, 2016, University of Texas – Austin

 A grand unified field tensor [Greek capital letter Mu] [Greek small letter mu] [Greek small letter nu] is constructed from Maxwell's field tensor and appropriately… (more)

Subjects/Keywords: Astrophysics; Plasma; Relativity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bhattacharjee, C. (2016). Magnetofluid dynamics in curved spacetime : theory and application. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/39646

Chicago Manual of Style (16th Edition):

Bhattacharjee, Chinmoy. “Magnetofluid dynamics in curved spacetime : theory and application.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/39646.

MLA Handbook (7th Edition):

Bhattacharjee, Chinmoy. “Magnetofluid dynamics in curved spacetime : theory and application.” 2016. Web. 11 Apr 2021.

Vancouver:

Bhattacharjee C. Magnetofluid dynamics in curved spacetime : theory and application. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/39646.

Council of Science Editors:

Bhattacharjee C. Magnetofluid dynamics in curved spacetime : theory and application. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/39646

4. Quevedo, Hernan Javier. Rotating mirror plasmas in the quest of magnetofluid states.

Degree: PhD, Physics, 2006, University of Texas – Austin

 The goal of this dissertation is to describe and discuss the first steps taken by the Magneto Bernoulli eXperiment (MBX) to create magnetofluid states in… (more)

Subjects/Keywords: Magnetohydrodynamics; Rotating plasmas; Magnetic mirrors; Plasma (Ionized gases)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Quevedo, H. J. (2006). Rotating mirror plasmas in the quest of magnetofluid states. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/2795

Chicago Manual of Style (16th Edition):

Quevedo, Hernan Javier. “Rotating mirror plasmas in the quest of magnetofluid states.” 2006. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/2795.

MLA Handbook (7th Edition):

Quevedo, Hernan Javier. “Rotating mirror plasmas in the quest of magnetofluid states.” 2006. Web. 11 Apr 2021.

Vancouver:

Quevedo HJ. Rotating mirror plasmas in the quest of magnetofluid states. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2006. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/2795.

Council of Science Editors:

Quevedo HJ. Rotating mirror plasmas in the quest of magnetofluid states. [Doctoral Dissertation]. University of Texas – Austin; 2006. Available from: http://hdl.handle.net/2152/2795

5. Pino, Jesse Ethan, 1981-. Global instabilities in rotating magnetized plasmas.

Degree: PhD, Physics, 2009, University of Texas – Austin

 The Magnetorotational Instability (MRI) is believed to be the primary mechanism for angular momentum transfer in astrophysical accretion disks. This instability, which exists in ionized… (more)

Subjects/Keywords: Magnetohydrodynamics; Disks (Astrophysics); Plasma astrophysics; Accretion (Astrophysics); Magnetic fields; Rotational motion

Page 1 Page 2 Page 3 Page 4 Page 5

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pino, Jesse Ethan, 1. (2009). Global instabilities in rotating magnetized plasmas. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/18376

Chicago Manual of Style (16th Edition):

Pino, Jesse Ethan, 1981-. “Global instabilities in rotating magnetized plasmas.” 2009. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/18376.

MLA Handbook (7th Edition):

Pino, Jesse Ethan, 1981-. “Global instabilities in rotating magnetized plasmas.” 2009. Web. 11 Apr 2021.

Vancouver:

Pino, Jesse Ethan 1. Global instabilities in rotating magnetized plasmas. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2009. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/18376.

Council of Science Editors:

Pino, Jesse Ethan 1. Global instabilities in rotating magnetized plasmas. [Doctoral Dissertation]. University of Texas – Austin; 2009. Available from: http://hdl.handle.net/2152/18376

6. Siemon, Carl Joseph. Interaction of charged particle beams with plasmas.

Degree: PhD, Physics, 2014, University of Texas – Austin

 This thesis focuses on the propagation of charged particle beams in plasmas, and is divided into two main parts. In the second chapter, a novel… (more)

Subjects/Keywords: Weibel instability; Modulation instability; PDPWA; Inertial confinement fusion; Proton-driven plasma wakefield acceleration

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Sample image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Siemon, C. J. (2014). Interaction of charged particle beams with plasmas. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/28480

Chicago Manual of Style (16th Edition):

Siemon, Carl Joseph. “Interaction of charged particle beams with plasmas.” 2014. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/28480.

MLA Handbook (7th Edition):

Siemon, Carl Joseph. “Interaction of charged particle beams with plasmas.” 2014. Web. 11 Apr 2021.

Vancouver:

Siemon CJ. Interaction of charged particle beams with plasmas. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2014. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/28480.

Council of Science Editors:

Siemon CJ. Interaction of charged particle beams with plasmas. [Doctoral Dissertation]. University of Texas – Austin; 2014. Available from: http://hdl.handle.net/2152/28480


University of Texas – Austin

7. Shahmoradi, Amir. Dissecting the relationship between protein structure and sequence evolution.

Degree: PhD, Physics, 2015, University of Texas – Austin

 What can protein structure tell us about protein evolutionary dynamics? Despite extensive variety in their native structures, from hyper-thermostable to intrinsically disordered, all proteins share… (more)

Subjects/Keywords: Biophysics; Evolutionary biology; Protein dynamics; Viral evolution

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shahmoradi, A. (2015). Dissecting the relationship between protein structure and sequence evolution. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/31639

Chicago Manual of Style (16th Edition):

Shahmoradi, Amir. “Dissecting the relationship between protein structure and sequence evolution.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/31639.

MLA Handbook (7th Edition):

Shahmoradi, Amir. “Dissecting the relationship between protein structure and sequence evolution.” 2015. Web. 11 Apr 2021.

Vancouver:

Shahmoradi A. Dissecting the relationship between protein structure and sequence evolution. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/31639.

Council of Science Editors:

Shahmoradi A. Dissecting the relationship between protein structure and sequence evolution. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/31639

8. Zhang, Xi, Ph. D. Laser wakefield and direct acceleration in the plasma bubble regime.

Degree: PhD, Physics, 2018, University of Texas – Austin

 Laser wakefield acceleration (LWFA) and direct laser acceleration (DLA) are two different kinds of laser plasma electron acceleration mechanisms. LWFA relies on the laser-driven plasma… (more)

Subjects/Keywords: Laser wakefield acceleration; Direct laser acceleration; Plasma bubble; Electron

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, Xi, P. D. (2018). Laser wakefield and direct acceleration in the plasma bubble regime. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63381

Chicago Manual of Style (16th Edition):

Zhang, Xi, Ph D. “Laser wakefield and direct acceleration in the plasma bubble regime.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/63381.

MLA Handbook (7th Edition):

Zhang, Xi, Ph D. “Laser wakefield and direct acceleration in the plasma bubble regime.” 2018. Web. 11 Apr 2021.

Vancouver:

Zhang, Xi PD. Laser wakefield and direct acceleration in the plasma bubble regime. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/63381.

Council of Science Editors:

Zhang, Xi PD. Laser wakefield and direct acceleration in the plasma bubble regime. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/63381

9. Chen, Zhongping. Magnetic equilibrium and transport modeling of divertors for solutions to exhaust problems in tokamaks.

Degree: PhD, Physics, 2017, University of Texas – Austin

 Problems of intense exhaust heat and particle fluxes incident on material surfaces are obstacles for magnetic confinement fusion in tokamaks. Advanced divertors offer magnetic solutions… (more)

Subjects/Keywords: Divertor; Magnetic equilibrium; Transport modeling; Exhaust problems; Tokamaks; X-divertors; Magnetic confinement fusion; Particle fluxes; Exhaust heat; Poloidal flaring

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, Z. (2017). Magnetic equilibrium and transport modeling of divertors for solutions to exhaust problems in tokamaks. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47382

Chicago Manual of Style (16th Edition):

Chen, Zhongping. “Magnetic equilibrium and transport modeling of divertors for solutions to exhaust problems in tokamaks.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/47382.

MLA Handbook (7th Edition):

Chen, Zhongping. “Magnetic equilibrium and transport modeling of divertors for solutions to exhaust problems in tokamaks.” 2017. Web. 11 Apr 2021.

Vancouver:

Chen Z. Magnetic equilibrium and transport modeling of divertors for solutions to exhaust problems in tokamaks. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/47382.

Council of Science Editors:

Chen Z. Magnetic equilibrium and transport modeling of divertors for solutions to exhaust problems in tokamaks. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/47382

10. Stark, David James. The multifaceted role of relativistic transparency in laser-plasma interactions.

Degree: PhD, Physics, 2016, University of Texas – Austin

 The nature of how light interacts with plasma is fundamentally altered when the bulk of the electrons become relativistic, manifested as an enhanced transparency of… (more)

Subjects/Keywords: Laser-plasma interaction; Relativistic plasma; Relativistic transparency; Synchrotron radiation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stark, D. J. (2016). The multifaceted role of relativistic transparency in laser-plasma interactions. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/39749

Chicago Manual of Style (16th Edition):

Stark, David James. “The multifaceted role of relativistic transparency in laser-plasma interactions.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/39749.

MLA Handbook (7th Edition):

Stark, David James. “The multifaceted role of relativistic transparency in laser-plasma interactions.” 2016. Web. 11 Apr 2021.

Vancouver:

Stark DJ. The multifaceted role of relativistic transparency in laser-plasma interactions. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/39749.

Council of Science Editors:

Stark DJ. The multifaceted role of relativistic transparency in laser-plasma interactions. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/39749


University of Texas – Austin

11. Soto Chavez, Angel Rualdo. Relativistic wave phenomena in astrophysical plasmas.

Degree: PhD, Physics, 2010, University of Texas – Austin

 The propagation and stability of waves in relativistic astrophysical plasmas is presented. Our investigation, using a relativistic two-fluid model, is different from previous relativistic fluid… (more)

Subjects/Keywords: Plasmas; Waves; Instabilities; Pulsars; Non-linear waves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Soto Chavez, A. R. (2010). Relativistic wave phenomena in astrophysical plasmas. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-1180

Chicago Manual of Style (16th Edition):

Soto Chavez, Angel Rualdo. “Relativistic wave phenomena in astrophysical plasmas.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed April 11, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-1180.

MLA Handbook (7th Edition):

Soto Chavez, Angel Rualdo. “Relativistic wave phenomena in astrophysical plasmas.” 2010. Web. 11 Apr 2021.

Vancouver:

Soto Chavez AR. Relativistic wave phenomena in astrophysical plasmas. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Apr 11]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-1180.

Council of Science Editors:

Soto Chavez AR. Relativistic wave phenomena in astrophysical plasmas. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-1180

.