Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"University of Texas – Austin" +contributor:("Huang, Qixing"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Texas – Austin

1. -4493-3358. Appropriate, accessible and appealing probabilistic graphical models.

Degree: Computer Sciences, 2017, University of Texas – Austin

Appropriate - Many multivariate probabilistic models either use independent distributions or dependent Gaussian distributions. Yet, many real-world datasets contain count-valued or non-negative skewed data, e.g. bag-of-words text data and biological sequencing data. Thus, we develop novel probabilistic graphical models for use on count-valued and non-negative data including Poisson graphical models and multinomial graphical models. We develop one generalization that allows for triple-wise or k-wise graphical models going beyond the normal pairwise formulation. Furthermore, we also explore Gaussian-copula graphical models and derive closed-form solutions for the conditional distributions and marginal distributions (both before and after conditioning). Finally, we derive mixture and admixture, or topic model, generalizations of these graphical models to introduce more power and interpretability. Accessible - Previous multivariate models, especially related to text data, often have complex dependencies without a closed form and require complex inference algorithms that have limited theoretical justification. For example, hierarchical Bayesian models often require marginalizing over many latent variables. We show that our novel graphical models (even the k-wise interaction models) have simple and intuitive estimation procedures based on node-wise regressions that likely have similar theoretical guarantees as previous work in graphical models. For the copula-based graphical models, we show that simple approximations could still provide useful models; these copula models also come with closed-form conditional and marginal distributions, which make them amenable to exploratory inspection and manipulation. The parameters of these models are easy to interpret and thus may be accessible to a wide audience. Appealing - High-level visualization and interpretation of graphical models with even 100 variables has often been difficult even for a graphical model expert – despite visualization being one of the original motivators for graphical models. This difficulty is likely due to the lack of collaboration between graphical model experts and visualization experts. To begin bridging this gap, we develop a novel "what if?" interaction that manipulates and leverages the probabilistic power of graphical models. Our approach defines: the probabilistic mechanism via conditional probability; the query language to map text input to a conditional probability query; and the formal underlying probabilistic model. We then propose to visualize these query-specific probabilistic graphical models by combining the intuitiveness of force-directed layouts with the beauty and readability of word clouds, which pack many words into valuable screen space while ensuring words do not overlap via pixel-level collision detection. Although both the force-directed layout and the pixel-level packing problems are challenging in their own right, we approximate both simultaneously via adaptive simulated annealing starting from careful initialization.… Advisors/Committee Members: Dhillon, Inderjit S. (advisor), Ravikumar, Pradeep (advisor), Mooney, Raymond J (committee member), Huang, Qixing (committee member), Wallace, Byron C (committee member).

Subjects/Keywords: Graphical models; Topic models; Poisson; Count data; Visualization; Human computer interaction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4493-3358. (2017). Appropriate, accessible and appealing probabilistic graphical models. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/62986

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

-4493-3358. “Appropriate, accessible and appealing probabilistic graphical models.” 2017. Thesis, University of Texas – Austin. Accessed April 22, 2019. http://hdl.handle.net/2152/62986.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

-4493-3358. “Appropriate, accessible and appealing probabilistic graphical models.” 2017. Web. 22 Apr 2019.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4493-3358. Appropriate, accessible and appealing probabilistic graphical models. [Internet] [Thesis]. University of Texas – Austin; 2017. [cited 2019 Apr 22]. Available from: http://hdl.handle.net/2152/62986.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

-4493-3358. Appropriate, accessible and appealing probabilistic graphical models. [Thesis]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/62986

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

.