Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Texas – Austin" +contributor:("Gamba, Irene M"). Showing records 1 – 18 of 18 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Texas – Austin

1. -9896-1704. Hamiltonian description of Hall and sub-electron scales in collisionless plasmas with reduced fluid models.

Degree: PhD, Physics, 2018, University of Texas – Austin

 In MHD magnetic helicity has been shown to represent Gauss linking numbers of magnetic field lines by Moffatt and others; thus it is endowed with… (more)

Subjects/Keywords: MHD; Magnetohydrodynamics; XMHD; Inertial MHD; Hall MHD; Turbulence; Reconnection; Hamiltonian dynamics; Casimir invariants; Poisson bracket; Noncanonical

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-9896-1704. (2018). Hamiltonian description of Hall and sub-electron scales in collisionless plasmas with reduced fluid models. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/68628

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-9896-1704. “Hamiltonian description of Hall and sub-electron scales in collisionless plasmas with reduced fluid models.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/68628.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-9896-1704. “Hamiltonian description of Hall and sub-electron scales in collisionless plasmas with reduced fluid models.” 2018. Web. 18 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-9896-1704. Hamiltonian description of Hall and sub-electron scales in collisionless plasmas with reduced fluid models. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/68628.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-9896-1704. Hamiltonian description of Hall and sub-electron scales in collisionless plasmas with reduced fluid models. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/68628

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

2. -4399-6341. Brownian motion in liquids : theory and experiment.

Degree: PhD, Physics, 2017, University of Texas – Austin

 Since the theoretical work of Einstein [1905] and von Smoluckowski [1906], and the experiments of Perrin [1909], Brownian motion at long time-scales has been extensively… (more)

Subjects/Keywords: Brownian motion; Unsteady Stokes flow; Low Reynolds number flow

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4399-6341. (2017). Brownian motion in liquids : theory and experiment. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63654

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-4399-6341. “Brownian motion in liquids : theory and experiment.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/63654.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-4399-6341. “Brownian motion in liquids : theory and experiment.” 2017. Web. 18 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4399-6341. Brownian motion in liquids : theory and experiment. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/63654.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-4399-6341. Brownian motion in liquids : theory and experiment. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/63654

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

3. Kontaxis, Andrew. Asymptotics for optimal investment with high-water mark fee.

Degree: PhD, Mathematics, 2015, University of Texas – Austin

 This dissertation studies the problem of optimal investment in a fund charging high-water mark fees. We consider a market consisting of a riskless money-market account… (more)

Subjects/Keywords: Stochastic control; Mathematical finance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kontaxis, A. (2015). Asymptotics for optimal investment with high-water mark fee. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/31516

Chicago Manual of Style (16th Edition):

Kontaxis, Andrew. “Asymptotics for optimal investment with high-water mark fee.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/31516.

MLA Handbook (7th Edition):

Kontaxis, Andrew. “Asymptotics for optimal investment with high-water mark fee.” 2015. Web. 18 Apr 2021.

Vancouver:

Kontaxis A. Asymptotics for optimal investment with high-water mark fee. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/31516.

Council of Science Editors:

Kontaxis A. Asymptotics for optimal investment with high-water mark fee. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/31516


University of Texas – Austin

4. Lingam, Manasvi. Hamiltonian and Action Principle formulations of plasma fluid models.

Degree: PhD, Physics, 2015, University of Texas – Austin

 The Hamiltonian and Action Principle (HAP) formulations of plasmas and fluids are explored in a wide variety of contexts. The principles involved in the construction… (more)

Subjects/Keywords: Plasma physics; Mathematical physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lingam, M. (2015). Hamiltonian and Action Principle formulations of plasma fluid models. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/31636

Chicago Manual of Style (16th Edition):

Lingam, Manasvi. “Hamiltonian and Action Principle formulations of plasma fluid models.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/31636.

MLA Handbook (7th Edition):

Lingam, Manasvi. “Hamiltonian and Action Principle formulations of plasma fluid models.” 2015. Web. 18 Apr 2021.

Vancouver:

Lingam M. Hamiltonian and Action Principle formulations of plasma fluid models. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/31636.

Council of Science Editors:

Lingam M. Hamiltonian and Action Principle formulations of plasma fluid models. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/31636

5. Neupane, Prapti. Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds.

Degree: PhD, Computational and applied mathematics, 2016, University of Texas – Austin

 Coastal areas are regions of high population density and urbanization. These areas are highly vulnerable to inundation and flooding not only because of hurricane storm… (more)

Subjects/Keywords: Hurricane storm surge; Rainfall runoff; Flooding; Discontinuous Galerkin method; Computational hydrology; Multi-dimensional model; Shallow water equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Neupane, P. (2016). Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/41984

Chicago Manual of Style (16th Edition):

Neupane, Prapti. “Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/41984.

MLA Handbook (7th Edition):

Neupane, Prapti. “Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds.” 2016. Web. 18 Apr 2021.

Vancouver:

Neupane P. Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/41984.

Council of Science Editors:

Neupane P. Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/41984

6. -5615-5026. Applications of Hamiltonian theory to plasma models.

Degree: PhD, Physics, 2016, University of Texas – Austin

 Three applications of Hamiltonian Methods in Plasma Physics are presented. The first application is the development of a new, five-field, Hamiltonian gyrofluid model. It is… (more)

Subjects/Keywords: Hamiltonian; Models; Plasma physics; ITG; Lagrange; Euler; Lust; Extended; MHD; Dirac; Constraints

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-5615-5026. (2016). Applications of Hamiltonian theory to plasma models. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/39645

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-5615-5026. “Applications of Hamiltonian theory to plasma models.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/39645.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-5615-5026. “Applications of Hamiltonian theory to plasma models.” 2016. Web. 18 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-5615-5026. Applications of Hamiltonian theory to plasma models. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/39645.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-5615-5026. Applications of Hamiltonian theory to plasma models. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/39645

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

7. -6430-5266. A hybridized discontinuous Galerkin method for nonlinear dispersive water waves.

Degree: PhD, Engineering Mechanics, 2017, University of Texas – Austin

 Simulation of water waves near the coast is an important problem in different branches of engineering and mathematics. For mathematical models to be valid in… (more)

Subjects/Keywords: Discontinuous Galerkin; DG; Hybridized; HDG; Nonlinear shallow water; Green-Naghdi; NSWE; GN; Galerkin method; Water waves; Nonlinear water waves; Dispersive water waves; Water wave simulation; Coastal water waves modeling; Korteweg-de Vries equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6430-5266. (2017). A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47354

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6430-5266. “A hybridized discontinuous Galerkin method for nonlinear dispersive water waves.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/47354.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6430-5266. “A hybridized discontinuous Galerkin method for nonlinear dispersive water waves.” 2017. Web. 18 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6430-5266. A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/47354.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6430-5266. A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/47354

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

8. Lena, Charles Manuel. Scalable electronic structure methods to solve the Kohn-Sham equation.

Degree: PhD, Chemical Engineering, 2018, University of Texas – Austin

 From the single hydrogen to proteins in the hundreds of thousands of kilodaltons, scientists can use the electronic structure of interacting atoms to predict their… (more)

Subjects/Keywords: Kohn-Sham equations; Density functional theory; High performance computing; Massively parallel computing; Electronic structure problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lena, C. M. (2018). Scalable electronic structure methods to solve the Kohn-Sham equation. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63299

Chicago Manual of Style (16th Edition):

Lena, Charles Manuel. “Scalable electronic structure methods to solve the Kohn-Sham equation.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/63299.

MLA Handbook (7th Edition):

Lena, Charles Manuel. “Scalable electronic structure methods to solve the Kohn-Sham equation.” 2018. Web. 18 Apr 2021.

Vancouver:

Lena CM. Scalable electronic structure methods to solve the Kohn-Sham equation. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/63299.

Council of Science Editors:

Lena CM. Scalable electronic structure methods to solve the Kohn-Sham equation. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/63299


University of Texas – Austin

9. Hagstrom, George Isaac. Infinite-dimensional Hamiltonian systems with continuous spectra : perturbation theory, normal forms, and Landau damping.

Degree: PhD, Physics, 2011, University of Texas – Austin

 Various properties of linear infinite-dimensional Hamiltonian systems are studied. The structural stability of the Vlasov-Poisson equation linearized around a homogeneous stable equilibrium [mathematical symbol] is… (more)

Subjects/Keywords: Infinite-dimensional Hamiltonian systems; Krein-Moser theorem; Landau damping; Caldeira-Leggett model; Hilbert transform; Vlasov-Poisson equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hagstrom, G. I. (2011). Infinite-dimensional Hamiltonian systems with continuous spectra : perturbation theory, normal forms, and Landau damping. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2011-08-3753

Chicago Manual of Style (16th Edition):

Hagstrom, George Isaac. “Infinite-dimensional Hamiltonian systems with continuous spectra : perturbation theory, normal forms, and Landau damping.” 2011. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/ETD-UT-2011-08-3753.

MLA Handbook (7th Edition):

Hagstrom, George Isaac. “Infinite-dimensional Hamiltonian systems with continuous spectra : perturbation theory, normal forms, and Landau damping.” 2011. Web. 18 Apr 2021.

Vancouver:

Hagstrom GI. Infinite-dimensional Hamiltonian systems with continuous spectra : perturbation theory, normal forms, and Landau damping. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2011. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-3753.

Council of Science Editors:

Hagstrom GI. Infinite-dimensional Hamiltonian systems with continuous spectra : perturbation theory, normal forms, and Landau damping. [Doctoral Dissertation]. University of Texas – Austin; 2011. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-3753

10. -9078-7801. Determination of the energy flux of internal gravity waves.

Degree: PhD, Physics, 2018, University of Texas – Austin

 Internal gravity waves are traveling disturbances that propagate within a fluid whose density varies with depth, and two prominent examples where these occur are the… (more)

Subjects/Keywords: Internal waves; Internal gravity waves; Energy flux; Pressure; Power

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-9078-7801. (2018). Determination of the energy flux of internal gravity waves. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63821

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-9078-7801. “Determination of the energy flux of internal gravity waves.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/63821.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-9078-7801. “Determination of the energy flux of internal gravity waves.” 2018. Web. 18 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-9078-7801. Determination of the energy flux of internal gravity waves. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/63821.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-9078-7801. Determination of the energy flux of internal gravity waves. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/63821

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

11. -1430-6073. Explosive evolution of near-threshold kinetic instabilities.

Degree: PhD, Physics, 2017, University of Texas – Austin

 In the past, studies of waves close to marginal stability have revealed a rich variety of behavior in different physical contexts. One of the possible… (more)

Subjects/Keywords: Physics; Plasma physics; Nuclear fusion; Nonlinear physics; Wave instabilities; Nonlinear waves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-1430-6073. (2017). Explosive evolution of near-threshold kinetic instabilities. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/62258

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-1430-6073. “Explosive evolution of near-threshold kinetic instabilities.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/62258.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-1430-6073. “Explosive evolution of near-threshold kinetic instabilities.” 2017. Web. 18 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-1430-6073. Explosive evolution of near-threshold kinetic instabilities. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/62258.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-1430-6073. Explosive evolution of near-threshold kinetic instabilities. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/62258

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

12. Mirabito, Christopher Michael. Analysis, implementation, and verification of a discontinuous galerkin method for prediction of storm surges and coastal deformation.

Degree: PhD, Computational and Applied Mathematics, 2011, University of Texas – Austin

 Storm surge, the pileup of seawater occurring as a result of high surface stresses and strong currents generated by extreme storm events such as hurricanes,… (more)

Subjects/Keywords: Shallow water equations; Sediment transport; Local discontinuous Galerkin; A priori estimates; Finite elements; Bed morphology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mirabito, C. M. (2011). Analysis, implementation, and verification of a discontinuous galerkin method for prediction of storm surges and coastal deformation. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2011-08-4130

Chicago Manual of Style (16th Edition):

Mirabito, Christopher Michael. “Analysis, implementation, and verification of a discontinuous galerkin method for prediction of storm surges and coastal deformation.” 2011. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/ETD-UT-2011-08-4130.

MLA Handbook (7th Edition):

Mirabito, Christopher Michael. “Analysis, implementation, and verification of a discontinuous galerkin method for prediction of storm surges and coastal deformation.” 2011. Web. 18 Apr 2021.

Vancouver:

Mirabito CM. Analysis, implementation, and verification of a discontinuous galerkin method for prediction of storm surges and coastal deformation. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2011. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-4130.

Council of Science Editors:

Mirabito CM. Analysis, implementation, and verification of a discontinuous galerkin method for prediction of storm surges and coastal deformation. [Doctoral Dissertation]. University of Texas – Austin; 2011. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-4130

13. Povich, Timothy James. Discontinuous Galerkin (DG) methods for variable density groundwater flow and solute transport.

Degree: PhD, Computational and Applied Mathematics, 2012, University of Texas – Austin

 Coastal regions are the most densely populated regions of the world. The populations of these regions continue to grow which has created a high demand… (more)

Subjects/Keywords: Variable density flow; Discontinuous Galerkin finite elements methods; Saltwater intrusion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Povich, T. J. (2012). Discontinuous Galerkin (DG) methods for variable density groundwater flow and solute transport. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2012-12-6504

Chicago Manual of Style (16th Edition):

Povich, Timothy James. “Discontinuous Galerkin (DG) methods for variable density groundwater flow and solute transport.” 2012. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/ETD-UT-2012-12-6504.

MLA Handbook (7th Edition):

Povich, Timothy James. “Discontinuous Galerkin (DG) methods for variable density groundwater flow and solute transport.” 2012. Web. 18 Apr 2021.

Vancouver:

Povich TJ. Discontinuous Galerkin (DG) methods for variable density groundwater flow and solute transport. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2012. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/ETD-UT-2012-12-6504.

Council of Science Editors:

Povich TJ. Discontinuous Galerkin (DG) methods for variable density groundwater flow and solute transport. [Doctoral Dissertation]. University of Texas – Austin; 2012. Available from: http://hdl.handle.net/2152/ETD-UT-2012-12-6504

14. Indrei, Emanuel Gabriel. Optimal transport, free boundary regularity, and stability results for geometric and functional inequalities.

Degree: PhD, Mathematics, 2013, University of Texas – Austin

 We investigate stability for certain geometric and functional inequalities and address the regularity of the free boundary for a problem arising in optimal transport theory.… (more)

Subjects/Keywords: Optimal transport theory; the relative isoperimetric inequality; the log-Sobolev inequality; free boundary regularity; partial differential equations; quantitative stability; the optimal partial transport problem.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Indrei, E. G. (2013). Optimal transport, free boundary regularity, and stability results for geometric and functional inequalities. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/20631

Chicago Manual of Style (16th Edition):

Indrei, Emanuel Gabriel. “Optimal transport, free boundary regularity, and stability results for geometric and functional inequalities.” 2013. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/20631.

MLA Handbook (7th Edition):

Indrei, Emanuel Gabriel. “Optimal transport, free boundary regularity, and stability results for geometric and functional inequalities.” 2013. Web. 18 Apr 2021.

Vancouver:

Indrei EG. Optimal transport, free boundary regularity, and stability results for geometric and functional inequalities. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2013. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/20631.

Council of Science Editors:

Indrei EG. Optimal transport, free boundary regularity, and stability results for geometric and functional inequalities. [Doctoral Dissertation]. University of Texas – Austin; 2013. Available from: http://hdl.handle.net/2152/20631

15. Gust, Erich D. Characteristic relaxation rates of a Bose gas in the classical, quantum and condensed regimes.

Degree: PhD, Physics, 2011, University of Texas – Austin

 We obtain the characteristic relaxation rates and relaxation modes of a Bose gas in three regimes. The classical regime corresponds to a classical gas of… (more)

Subjects/Keywords: Bose-Einstein condensate; BEC; Relaxation; Kinetic equation; Boson; Boltzmann; Uehling-Uhlenbeck; Equilibrium

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gust, E. D. (2011). Characteristic relaxation rates of a Bose gas in the classical, quantum and condensed regimes. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2011-08-4061

Chicago Manual of Style (16th Edition):

Gust, Erich D. “Characteristic relaxation rates of a Bose gas in the classical, quantum and condensed regimes.” 2011. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/ETD-UT-2011-08-4061.

MLA Handbook (7th Edition):

Gust, Erich D. “Characteristic relaxation rates of a Bose gas in the classical, quantum and condensed regimes.” 2011. Web. 18 Apr 2021.

Vancouver:

Gust ED. Characteristic relaxation rates of a Bose gas in the classical, quantum and condensed regimes. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2011. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-4061.

Council of Science Editors:

Gust ED. Characteristic relaxation rates of a Bose gas in the classical, quantum and condensed regimes. [Doctoral Dissertation]. University of Texas – Austin; 2011. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-4061

16. Michoski, Craig E. Evolution equations in physical chemistry.

Degree: PhD, Chemistry, 2009, University of Texas – Austin

 We analyze a number of systems of evolution equations that arise in the study of physical chemistry. First we discuss the well-posedness of a system… (more)

Subjects/Keywords: Evolution Equations; Physical Chemistry; Chemical Physics; Thermodynamics; Chemical Kinetics; Compressible Flow; Quantum Hydrodynamics (QHD); Chemical Reactors; Multicomponent Flows; Multiphase; Partial Differential Equation; Mathematical Analysis, Finite Element Method (FEM); Discontinuous Galerkin (DG); Boundary Conditions.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Michoski, C. E. (2009). Evolution equations in physical chemistry. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2009-05-54

Chicago Manual of Style (16th Edition):

Michoski, Craig E. “Evolution equations in physical chemistry.” 2009. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/ETD-UT-2009-05-54.

MLA Handbook (7th Edition):

Michoski, Craig E. “Evolution equations in physical chemistry.” 2009. Web. 18 Apr 2021.

Vancouver:

Michoski CE. Evolution equations in physical chemistry. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2009. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/ETD-UT-2009-05-54.

Council of Science Editors:

Michoski CE. Evolution equations in physical chemistry. [Doctoral Dissertation]. University of Texas – Austin; 2009. Available from: http://hdl.handle.net/2152/ETD-UT-2009-05-54


University of Texas – Austin

17. Schmitz, Phillip Gordon. Fast direct algorithms for elliptic equations via hierarchical matrix compression.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

 We present a fast direct algorithm for the solution of linear systems arising from elliptic equations. We extend the work of Xia et al. (2009)… (more)

Subjects/Keywords: Fast algorithms; Hierarchical matrices; Sparse; Direct; Elliptic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schmitz, P. G. (2010). Fast direct algorithms for elliptic equations via hierarchical matrix compression. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-08-1847

Chicago Manual of Style (16th Edition):

Schmitz, Phillip Gordon. “Fast direct algorithms for elliptic equations via hierarchical matrix compression.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/ETD-UT-2010-08-1847.

MLA Handbook (7th Edition):

Schmitz, Phillip Gordon. “Fast direct algorithms for elliptic equations via hierarchical matrix compression.” 2010. Web. 18 Apr 2021.

Vancouver:

Schmitz PG. Fast direct algorithms for elliptic equations via hierarchical matrix compression. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-08-1847.

Council of Science Editors:

Schmitz PG. Fast direct algorithms for elliptic equations via hierarchical matrix compression. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-08-1847


University of Texas – Austin

18. Leger, Nicholas Matthew. A fragmentation model for sprays and L² stability estimates for shockes solutions of scalar conservation laws using the relative entropy method.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

 We present a mathematical study of two conservative systems in fluid mechanics. First, we study a fragmentation model for sprays. The model takes into account… (more)

Subjects/Keywords: Shocks; Conservation laws; Relative entropy; Stability; Sprays; Fluid-particle model

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leger, N. M. (2010). A fragmentation model for sprays and L² stability estimates for shockes solutions of scalar conservation laws using the relative entropy method. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-1305

Chicago Manual of Style (16th Edition):

Leger, Nicholas Matthew. “A fragmentation model for sprays and L² stability estimates for shockes solutions of scalar conservation laws using the relative entropy method.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed April 18, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-1305.

MLA Handbook (7th Edition):

Leger, Nicholas Matthew. “A fragmentation model for sprays and L² stability estimates for shockes solutions of scalar conservation laws using the relative entropy method.” 2010. Web. 18 Apr 2021.

Vancouver:

Leger NM. A fragmentation model for sprays and L² stability estimates for shockes solutions of scalar conservation laws using the relative entropy method. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-1305.

Council of Science Editors:

Leger NM. A fragmentation model for sprays and L² stability estimates for shockes solutions of scalar conservation laws using the relative entropy method. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-1305

.